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The photon spectrum in the inclusive electromagnetic radiative decays of the B meson, B ! Xs� plus

B ! Xd�, is studied using a data sample of ð382:8� 4:2Þ � 106�ð4SÞ ! B �B decays collected by the

BABAR experiment at SLAC. The spectrum is used to extract the branching fraction BðB ! Xs�Þ ¼
ð3:21� 0:33Þ � 10�4 for E� > 1:8 GeV and the direct CP asymmetry ACPðB ! Xsþd�Þ ¼
0:057� 0:063. The effects of detector resolution and Doppler smearing are unfolded to measure the

photon energy spectrum in the B meson rest frame.

DOI: 10.1103/PhysRevLett.109.191801 PACS numbers: 13.20.He, 11.30.Er, 12.15.Hh

In the standard model (SM), the electromagnetic
radiative decays of the b quark, b ! s� and b ! d�,
proceed via a loop diagram at leading order. A wide
variety of new physics (NP) scenarios such as supersym-
metry may cause new contributions to the loop [1–8] at
the same order as the SM, resulting in significant devia-
tions for both the branching fractions and the direct CP
asymmetry

ACP ¼ �½b ! ðsþ dÞ�� � �½ �b ! ð �sþ �dÞ��
�½b ! ðsþ dÞ�� þ �½ �b ! ð �sþ �dÞ�� :

Inclusive hadronic branching fractions (BF) BðB ! Xs�Þ
and BðB ! Xd�Þ can be equated with the perturbatively
calculable partonic BF Bðb ! s�Þ and Bðb ! d�Þ
at the level of a few percent [9], allowing theoretically
clean predictions. At next-to-next-to-leading-order
(four-loop), the SM calculation gives BðB ! Xs�Þ ¼
ð3:15� 0:23Þ � 10�4 (E� > 1:6 GeV) [10], where E� is

the photon energy measured in the rest frame of the B
meson. BðB ! Xd�Þ is suppressed by a factor of
jVtd=Vtsj2 � 0:04, where Vij are the elements of

the Cabbibo-Kobayashi-Mashawa (CKM) quark-mixing
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matrix. NP with nonminimal flavor violation can also
significantly enhance ACP [11], which is approximately
10�6 in the SM [12–14]. Consequently the precision
measurement of these decays has long been identified as
important in the search for NP. They are central to the
program of the future Super B factories [15–17], which
will probe NP mass scales up to 100 TeV.

In this letter, new precise measurements ofBðB ! Xs�Þ
and ACP are presented. The analysis has been significantly
improved from our previous result [18], which it super-
sedes. In addition, the shape of the photon energy spectrum
is measured in the B meson rest frame. It is insensitive to
NP [19] but can be used to determine the heavy quark
expansion parameters mb and �2

� [20,21], related to the
mass and momentum of the b quark within the B meson.
These parameters are used to reduce the uncertainty in
the extraction of the CKM elements jVcbj and jVubj from
semileptonic B meson decays [22–25].

This Letter summarizes a fully inclusive analysis of
B ! Xs� decays collected from eþe� ! �ð4SÞ ! B �B
events. Full details are given in Ref. [26]. The photon
from the decay of one B meson is measured, but Xs is
not reconstructed. This avoids large uncertainties from
the modeling of the Xs system, at the cost of large back-
grounds, which need to be strongly suppressed. The prin-
cipal backgrounds are from other B �B decays containing a
high-energy photon and from continuum q �q (q ¼ udsc)
and �þ�� events. The continuum background, including
a contribution from initial-state radiation, is suppressed
principally by requiring a high-momentum charged lepton
(‘‘lepton tag’’) from the nonsignal B decay, and also by
discriminating against events with a more jetlike topology.
The B �B background to high-energy photons, dominated
by �0 and � decays, is reduced by vetoing reconstructed
�0 or � mesons. The residual continuum background is
subtracted using off-resonance data collected at a center-
of-mass (c.m.) energy 40 MeV below the �ð4SÞ, while
the remaining B �B background is estimated using a
Monte Carlo (MC) simulation that has been corrected
using data control samples. The photon energy spectrum
is measured in the �ð4SÞ rest frame. Quantities measured
in this frame are denoted by an asterisk, e.g., E�

�.

The data were collected with the BABAR detector [27]
at the PEP-II asymmetric-energy eþe� collider. The on-
resonance integrated luminosity is 347:1 fb�1, correspond-
ing to ð382:8� 4:2Þ � 106 B �B events. Additionally,
36:4 fb�1 of off-resonance data are used. The BABAR
MC simulation, based on GEANT4 [28], EVTGEN [29], and
JETSET [30], is used to generate samples of BþB� and

B0 �B0 (excluding signal channels), q �q, �þ��, and signal
events. The signal models used to compute efficiencies are
based on QCD calculations in the ‘‘kinetic scheme’’ [20],
‘‘shape function scheme’’ [21], and in an earlier model
[19]. These calculations approximate the Xs resonance
structure with a smooth distribution in the hadronic mass

mXs
. The portion of the mXs

spectrum below 1:1 GeV=c2,

where the K�ð892Þ dominates, is replaced by a Breit-
Wigner K�ð892Þ distribution. The analysis is performed
‘‘blind’’ in the range 1:8<E�

� < 2:9 GeV; that is, the

on-resonance data are not examined until all selection
requirements are finalized and the corrected B �B back-
grounds determined. The signal range is limited by large
B �B backgrounds at low E�

�.

The event selection begins by requiring at least one
photon candidate with 1:53< E�

� < 3:50 GeV. A photon

candidate is an electromagnetic calorimeter (EMC) energy
cluster with a lateral profile consistent with that of a
single photon, isolated by 25 cm from any other cluster,
and well contained in the calorimeter. Photons that
are consistent with originating from an identifiable �0 or
� ! �� decay are vetoed. Hadronic events are selected
by requiring at least three reconstructed charged particles
and the normalized second Fox-Wolfram moment R�

2 to be
less than 0.9. To reduce radiative Bhabha and two-photon
backgrounds, the number of charged particles plus half
the number of photons with energy above 0.08 GeV is
required to be at least 4.5.
About 20% of Bmesons decay semileptonically to either

e or�. Leptons from these decays are emitted isotropically
and tend to have higher momentum than the continuum
background in which the lepton and photon candidates
also tend to be anticollinear. To suppress the continuum
background a tagging lepton (‘ ¼ e,�) is required to have
momentum p�

l > 1:05 GeV=c and an angle relative to

the photon cos���‘ >�0:7. The tag requirement does not

compromise the inclusiveness of the B ! Xs� selection
since the lepton comes from the recoiling B meson. The
presence of a relatively high-energy neutrino in semilep-
tonic B decays is used to further suppress the background
by requiring the missing energy of the event to satisfy
E�
miss > 0:7 GeV.
The sample is separated into electron and muon tags.

For each, p�
l and cos���‘ are then combined in a neural

network (NN) with eight event-shape variables that exploit
the difference in topology between isotropic B �B events and
jetlike continuum events. The NN is trained to separate
signal-like events from continuum background using MC
samples. The B �B background sample is excluded from the
training because it is used for background subtraction and
is topologically similar to the signal. The NN is validated
with a B ! Xs�

0 data sample.
The selection criteria are optimized for statistical preci-

sion. This was done iteratively for five variables: the two
NN outputs, the energies of the lower-energy photon in
the �0 and � vetoes, and E�

miss. The signal efficiency for

the entire selection depends on E�
�, falling at lower values.

This effect is significantly reduced from our previous
analysis, lessening the uncertainty due to the assumed
signal model (‘‘model-dependence’’). The efficiency inte-
grated over the range 1:8< E�

� < 2:8 GeV is about 2.5%,

PRL 109, 191801 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

9 NOVEMBER 2012

191801-4



while only 0.0005% of the continuum and 0.013% of the
B �B background remain in the sample.

The remaining continuum background is estimated with
off-resonance data scaled to the on-resonance luminosity
and adjusted to account for the 40 MeV c.m. energy
difference. The B �B background is estimated with the B �B
MC sample. It consists predominantly of photons originat-
ing from �0 or � decays (� 80% in the signal region),
electrons (� 10%) that are misreconstructed, not identi-
fied, or undergo hard bremsstrahlung, ! and �0 decays
(� 4%), and �n’s (� 2%) that fake photons by annihilating
in the EMC. Each of the significant components is cor-
rected by comparison with data control samples.

The �0 and � background simulations are compared
to data using the same selection criteria as for B ! Xs�
but removing the �0 and � vetos. For this comparison the
high-energy photon requirement is relaxed to E�

� >

1:03 GeV to increase the size of the sample. The yields
of�0 and� are measured in bins of E�

�0ð�Þ by fitting the ��
mass distributions in on-resonance data, off-resonance
data, and B �B simulation. Correction factors to the �0 and
� components of the B �B simulation are derived from these
yields. An additional correction is applied to account for
data-MC differences in the low-energy photon detection
efficiency. This has an opposite effect on the control-
sample �0 and � selection than on the standard event
selection, where finding a �0 or � results in the event
being vetoed.

As an antineutron control sample could not be isolated,
this source of BB background is corrected by comparing
simulation to data for inclusive antiproton yields in B

decay and, using� ! p�þ samples, for the EMC response
to p’s. The misreconstructed electron background is
measured using B ! XJ=c ðeþe�Þ data. This sample
closely models the particle multiplicity inB ! Xs� events.
Bremsstrahlung in the detector is reliably simulated by
GEANT4, so no correction is necessary. The small contribu-

tions from! and�0 decays are corrected in bins ofE�
� using

inclusive B decay data. Nearly all of the tagging leptons
arise from B ! Xc‘�. The yield of such events in the
simulation is corrected as a function of lepton momentum
according to previous BABAR measurements [31,32].
The complete B �B background estimation incorporates
the correction factors and uncertainties and includes
correlations between E�

� bins. The dominant uncertainties

originate from the �0, �, and misreconstructed electron
corrections.

Figure 1 shows the measured E�
� spectrum after subtract-

ing both continuum and B �B backgrounds. The systematic
errors are due to the B �B subtraction uncertainty. The region
1:53< E�

� < 1:80 GeV is dominated by B �B background,

while the higher-energy range 2:9<E�
� < 3:5 GeV con-

tains only continuum background. These regions are used
to validate the background subtraction procedure. In the
higher-energy range there are �100� 138ðstatÞ events.

In the lower-energy region there are 1252� 272ðstatÞ �
841ðsystÞ events. Allowing for an average of 275 signal
events from a range of plausible signal models, and for
correlations between the bins, the latter result is consistent
with zero to within 1 standard deviation (1	).
To extract BFs and the shape of the spectrum, it is

necessary to first correct for efficiency. Theoretical predic-
tions are made for the true E� in the B meson rest frame,

whereas the E�
� is measured in the �ð4SÞ frame. Hence it is

also necessary to correct for the asymmetric EMC resolu-
tion and the Doppler smearing due to the motion of the B
meson in the�ð4SÞ rest frame. The efficiency and smearing
corrections depend upon the assumed signal shape due to
the effects of bin migration. In both the kinetic and shape
function schemes, this shape is parametrized bymb and�

2
�.

The Heavy Flavor Averaging Group (HFAG) [33] has
extracted values and uncertainties in the kinetic scheme
by fitting moments of inclusive distributions in B ! Xc‘�
decays and previous B ! Xs�measurements, and has also
translated them to the shape function scheme. These results
define the nominal signal model (kinetic scheme) used for
the BF measurement, along with a model-dependence un-
certainty (kinetic and shape function schemes). To provide
an independent measurement of the shape of the spectrum,
the measured spectrum is unfolded using an iterative
technique that reduces sensitivity to the signal model. In
this case the initial signal model and model-dependence
uncertainty are based on the data rather than the HFAG
parameters. The effects of efficiency and smearing cancel in
the ACP measurement so it is extracted directly from the
measured E�

� yield separated by lepton tag charge.

The BF is computed from

B ðB ! Xsþd�Þ ¼ 
S=ð2NB �B�sigÞ;
where S is the signal yield integrated over the E�

� ranges

1.8, 1.9, 2.0 to 2.8 GeV, �sig is the signal efficiency, and
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FIG. 1 (color online). The measured E�
� photon energy spec-

trum after background subtraction, uncorrected for efficiency
and resolution smearing. The inner error bars are statistical only,
while the outer include systematic errors added in quadrature.
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NB �B is the number of B �B pairs in the sample. The factor 
,
which is close to unity, corrects for resolution and Doppler
smearing and is computed with the nominal signal model.
The model-dependence errors on the BF associated with
the efficiency and the smearing correction are fully
correlated. The results for the three energy ranges are
given in Table I. The BFs have been corrected by a factor
1=ð1þ ðjVtdj=jVtsjÞ2Þ ¼ 0:958� 0:003 [34] to remove the
contribution from b ! d�. The most significant systematic
error is from the corrections to the B �B background
simulation, which in the range 1:8 GeV< E� < 2:8 GeV

contributes 7.8% to a total systematic uncertainty of 9.0%.
Additional contributions added in quadrature, all energy-
independent, arise from uncertainties in the selection
efficiency (3.1%), predominantly due to the high-energy
photon and NN selections, the semileptonic BF for B
meson decays, and the modeling of the Xs system.
Correlations between the B �B and the signal efficiency
systematic errors contribute an additional 2.9% uncer-
tainty. Finally, there is a 1.1% uncertainty in NB �B.

To obtain an E� spectrum in the B rest frame, the E�
�

spectrum shown in Fig. 1 is corrected for selection effi-
ciency, and the resolution smearing and Doppler smearing
are unfolded. A simplified version [35] of an iterative
unfolding technique [36] is used. The method starts with
an initial signal model that, when passed through the
detector simulation and event selection, closely resembles
the data (shape function scheme with mb ¼ 4:51 GeV,
�2

� ¼ 0:46 GeV2). This model is used to correct for effi-
ciency and unfold the data. A fraction, determined by a
bin-dependent regularization function, of the difference
between the unfolded data and the initial signal model is
used to adjust the signal model, and the process is iterated
until it converges. Only one iteration is necessary. The
results are shown in Fig. 2. This technique preserves fluc-
tuations in the spectrum and reduces the model error. The
model-dependence uncertainty is computed using an initial
model that is approximately 1	 lower than the data in
Fig. 1 in the region with significant B �B background (1:8<

E�
� < 2:1 GeV). The error is the absolute value of the

difference bin by bin after unfolding. It is small except
near the kinematic limit, E� � mB=2, where the sharply

falling edge leads to strongly anticorrelated differences in
adjacent bins. To reduce this effect, the 100-MeV bins
between 2.4 and 2.8 GeV are combined into 200-MeV
bins. The spectral shape and the full covariance matrix,

provided in Ref. [26], are used to compute the first and
second moments in Table I. They can also be used to fit
any theoretical prediction for the spectral shape. The BFs
computed from the sum of the �B in Fig. 2 are consistent
with the values given in Table I [26].
Finally the E�

� sample is divided into B and �B decays,

using the charge of the lepton tag, to measure Ameas
CP ðB !

Xsþd�Þ ¼ ðNþ � N�Þ=ðNþ þ N�Þ, where Nþð�Þ are the
positively (negatively) tagged signal yields. ACP is then
given by ACP ¼ Ameas

CP =ð1� 2!Þ, where ! is the mistag

fraction. To maximize the statistical precision a require-
ment of 2:1<E�

� < 2:8 GeV is made. This is determined

from simulation and does not bias the SM prediction for
the asymmetry [37]. The yields are Nþ ¼ 2620�
158ðstatÞ and N� ¼ 2389� 151ðstatÞ. The bias on ACP

due to charge asymmetry in the detector response or B �B
background is measured to be �Ameas

CP ðB ! Xsþd�Þ ¼
�0:004� 0:013, using events in the B �B control region to
check for a background asymmetry, and using several
event samples (eþe� ! eþe��, eþe� ! ���, and

B ! Kð�ÞJ=c ð‘þ‘�Þ) to check for a lepton tag asymmetry.
The mistag fraction ! ¼ 0:133� 0:006 is dominated by
B0 �B0 mixing, which contributes 0:093� 0:001 [34], with

TABLE I. The measured BF, first, and second moments (� stat� syst�model) for different ranges of E� in the B rest frame.
Correlations between the energy ranges are given in Ref. [26].

E� Range (GeV) BðB ! Xs�Þ (10�4) hE�i (GeV) hðE� � hE�iÞ2i (GeV2)

1.8 to 2.8 3:21� 0:15� 0:29� 0:08 2:267� 0:019� 0:032� 0:003 0:0484� 0:0053� 0:0077� 0:0005
1.9 to 2.8 3:00� 0:14� 0:19� 0:06 2:304� 0:014� 0:017� 0:004 0:0362� 0:0033� 0:0033� 0:0005
2.0 to 2.8 2:80� 0:12� 0:14� 0:04 2:342� 0:010� 0:008� 0:005 0:0251� 0:0021� 0:0013� 0:0009
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FIG. 2 (color online). The E� photon energy spectrum cor-
rected for efficiency, resolution, and Doppler smearing, shown as
a partial branching fraction �B. The inner error bars are
statistical and the outer include systematic errors added in
quadrature. The vertical line shows the boundary between the
lower control region and the signal region. The curve is the
kinetic scheme model using HFAG world average parameters,
normalized to data in the range 1:8<EB

� < 2:8 GeV.
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an additional 0:040� 0:005 arising from wrong-sign lep-
tons from the B decay chain and from misidentifcation of
hadrons as leptons. After correcting for charge bias and
mistagging it is found

ACP ¼ 0:057� 0:060ðstatÞ � 0:018ðsystÞ:
The systematic error includes relative uncertainties from
the B �B background subtraction (2.2%) and mistagging
(1.8%). The uncertainty due to differences in the B ! Xs�
and B ! Xd� spectra is negligible.

In summary, the photon spectrum of B ! Xsþd� decays
has beenmeasured andused to extract the branching fraction,
spectral moments, and ACP. Previous inclusive measure-
ments of B ! Xs� have been presented by the CLEO [38],
BABAR [18], and Belle [39] Collaborations. The measured
branching fraction BðB ! Xs�Þ ¼ ð3:21� 0:15� 0:29�
0:08Þ � 10�4 (1:8<E�<2:8GeV) is comparable in preci-

sion to the Belle result, ð3:36�0:13�0:25�0:01Þ�10�4,
butwith a data set that has 60%smaller integrated luminosity.
The BF for 1:8<E� < 2:8 GeV is extrapolated to the range

E� > 1:6 GeV using a factor of 1=ð0:968� 0:006Þ deter-
mined by HFAG. This results in BðB ! Xs�Þ ¼ ð3:31�
0:16� 0:30� 0:09Þ � 10�4 for E� > 1:6 GeV, in good

agreement with the SM prediction. The extrapolated
BðB ! Xs�Þ can be used to constrain NP. For example, in
a type-II two-Higgs-doublet model [10,40] the region
MH� < 327 GeV is excluded independent of tan� at 95%
confidence level. This limit is far more stringent than that
from direct searches at the LHC [41,42]. The ACP measure-
ment is the most precise to date and can be used to constrain
nonminimal flavor-violating models [11]. The measured
moments and spectra provide input to improve the precision
on the HFAG estimation ofmb and�

2
�, which will result in a

reduced error on jVubj. Finally, the improved technique
presented in this Letter can be applied with increased preci-
sion at future Super B factories.
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