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We demonstrate that the Rényi-2 entropy provides a natural measure of information for any multimode
Gaussian state of quantum harmonic systems, operationally linked to the phase-space Shannon sampling
entropy of the Wigner distribution of the state. We prove that, in the Gaussian scenario, such an entropy
satisfies the strong subadditivity inequality, a key requirement for quantum information theory. This
allows us to define and analyze measures of Gaussian entanglement and more general quantum
correlations based on such an entropy, which are shown to satisfy relevant properties such as monogamy.
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In quantum information theory, the degree of informa-
tion contained in a quantum state p is conventionally
quantified via the von Neumann entropy of the state
S(p) = —tr(pInp), that is the direct counterpart to the
Shannon entropy in classical information theory [1]. The
most fundamental mathematical implications and physical
insights in quantum information theory, ranging from the
Holevo bound [2] all the way to the whole genealogy of
quantum communication protocols [3,4], rely on a key
property satisfied by the von Neumann entropy, the strong
subadditivity inequality [5,6]

S(pap) + S(ppc) = S(pasc) + S(pp), (1)

for an arbitrary tripartite state p,pc. The strong subaddi-
tivity inequality implies in particular that the mutual
information

I (pa:p) = S(pa) + S(pp) — S(pasp), 2

which measures the total correlations between the subsys-
tems A and B in the bipartite state p,p, is always non-
negative. However, in classical as well as quantum
information theory, several other entropic quantities have
been introduced and studied. In particular, Rényi-a entro-
pies [7] are an interesting family of additive entropies,
whose interpretation is related to derivatives of the free
energy with respect to temperature [8], and which have
found applications especially in the study of channel
capacities [9], work value of information [10], and entan-
glement spectra in many-body systems [11]. They are
defined as

Salp) = (1 — a) ' Intr(p®), 3)

and reduce to the von Neumann entropy in the limit ¢ — 1.
Rényi entropies are powerful quantities for studying quan-
tum correlations in multipartite states. For a bipartite
pure state p,p, any of the entropies in Eq. (3) evaluated
on the reduced density matrix of one subsystem only, say
P4, is an entanglement monotone [12], dubbed Rényi-a
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entanglement [13]. Any such measure can be extended to
mixed states via conventional convex roof techniques [14].
Using the a = 2 instance, S,(p) = — Intr(p?), the ensu-
ing Rényi-2 measure of entanglement has been defined and
proven to satisfy the important ‘monogamy’ inequality
[15,16] for multiqubit states [13,17]. Nonetheless,
Rényi-« entropies for @ # 1 are not in general subadditive
[1]; this entails, e.g., that if one replaces S by S, in (2),
the corresponding quantity can become negative, i.e.,
meaningless as a correlation measure; see Ref. [18] for
explicit two-qubit instances of this fact when o = 2.

In this Letter, we focus our attention on multimode
quantum harmonic oscillators, and analyze the informa-
tional properties of general Gaussian states as measured by
the Rényi-2 entropy. Gaussian states constitute versatile
resources for quantum communication protocols with con-
tinuous variables [19,20] and are important test beds for
investigating the structure of quantum correlations [21],
whose role is crucial in fields as diverse as quantum field
theory, solid state physics, quantum stochastic processes,
and open system dynamics. Gaussian states naturally occur
as ground or thermal equilibrium states of any physical
quantum system in the ‘small-oscillations’ limit [22,23],
and can be very efficiently engineered, controlled and
detected in various experimental setups, including light,
atomic ensembles, trapped ions, nanomechanical or opto-
mechanical resonators, and hybrid interfaces thereof [20].
Given the special role played by Gaussian states and
operations, which are formally ‘extremal’ with respect to
several quantum primitives [23], a Gaussian-only theory of
quantum information is actively pursued [24,25]. In par-
ticular, a key conjecture which—despite its disproof for
general channels [26]—still stands within the Gaussian
scenario, is the so-called minimum output entropy conjec-
ture for bosonic channels [24,25,27,28]. Interestingly,
the conjecture is verified (for all phase-insensitive chan-
nels) if using Rényi-a entropies with @ = 2 [29], but to
date is resisting an analytical proof for &« — 1 [30]. This
somehow raises the question whether the von Neumann
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entropy is indeed the most natural one within the Gaussian
scenario [31].

Here we show that the Rényi-2 entropy should be re-
garded as a specially meaningful choice to develop a
Gaussian theory of quantum information and correlations.
We prove that the Rényi-2 entropy S, satisfies the strong
subadditivity inequality (1) for all Gaussian states, is op-
erationally linked to the Shannon entropy of Gaussian
Wigner distributions (providing a natural measure of state
distinguishability in phase space), and can be employed to
define valid measures of Gaussian entanglement [32,33]
and general discordlike quantum correlations [34-38],
whose monogamy properties [15,16,39-42] we investigate
in detail. In particular, we obtain a truly bona fide measure
of genuine tripartite entanglement for three-mode
Gaussian states, based on S,. Our study allows us to
explore within a unified framework the various facets of
nonclassicality in the Gaussian realm.

Rényi-2 entropy for Gaussian states.—We consider
an n-mode continuous variable system; we collect
the quadrature operators in the vector R=
(@1, 1> G2 Dor -+ -» G Pn)T € R** and write the canonical
commutation relations compactly as [R i R] = i(w®) ik

with
(0 1
@ -1 0

being the symplectic matrix. A Gaussian state p is de-
scribed by a positive, Gaussian-shaped Wigner distribution
in phase space,

1
W,(£) Zﬂ_n—mexp(_fT‘}’_lf), 4

where & € R?", and v is the covariance matrix (CM) of
elements y;, = tr p{R f R:}+], which (up to local dis-
placements) completely characterizes the Gaussian state p.

Let us now evaluate different entropic quantities on the
Gaussian state p. All the measures defined below are
invariant under local unitaries, so we will assume our states
to have zero first moments, (R) = 0, without loss of
generality. The purity is easily computed as trp? =
Q)" [pon Wa(E)dE = (dety)~(1/2 Hence, the Rényi-2
entropy of an arbitrary n-mode Gaussian state is

1
S,(p) = 3 In(dety), (5)

ranging from O on pure states (dety = 1) and growing
unboundedly with increasing mixedness (i.e., temperature)
of the state. The von Neumann entropy is instead a more
complicated function that depends on the local tempera-
tures of all the n normal modes of p, that is, on the full
symplectic spectrum of y [21,31,43,44]. On the other hand,
since the Wigner function is a valid probability distribution
providing a fully equivalent description of p, we can

alternatively compute the Shannon entropy of W/, to obtain
an alternative quantifier of the informational content of any
Gaussian state. Such an entropy has a clear interpretation
in terms of phase-space sampling via homodyne detections
[45]. The continuous (Boltzmann-Gibbs-)Shannon entropy
for a probability distribution P(x) is defined as H(P) =
— [ P(x) InP(x)dx [46]. It can be shown that [47] (see the
Supplemental Material [48] for a derivation)

HW,) = = [ W)W, (@
= 8,(p) + n(1 + Inm). (6)

Interestingly, we see that this sampling entropy coincides
(modulo the additional constant) with the Rényi-2 entropy
rather than the von Neumann one for Gaussian states. We
can now take an extra step and introduce a ‘relative sam-
pling entropy’, to quantify the phase-space distinguish-
ability of two n-mode Gaussian quantum states p; and
p> (with CMs vy, and 1v,, respectively), defined as the
relative Shannon entropy (also known as Kullback-
Leibler divergence [1,6]) between their respective
Wigner distributions W, and W, , yielding [48]

v, W0 = [, @)

1 dety, _
=_|1 +t N{-n 7
2[ n( dem) (7172 )] n (7)

Let us evaluate Eq. (7) when p; = p,p is a generic
Gaussian state of a composite system, partitioned into
two subsystems A and B (of n, and ng modes respectively,
with ny + ng = n), and p, = p, ® pp is the tensor prod-
uct of the two marginals of p,p. Writing the CMs in block
form,

YA SaB )

= @D vp, 8
sl v YV2=va®v (8

?’15%13:(

we have tr(y,y,!) = 2(ny + ng) = 2n, which entails
H(WPAB ” WPA®PB) = H(WPA) + H(WPB) o H(WPAB)

1 1n(detyA det'yB)
2 det’)/AB

= S(pa) + S2(pp) — S2(pap)
= I (pa: p)- ©)

The above equation defines the ‘Gaussian Rényi-2 (GR2)
mutual information’ I, for an arbitrary bipartite Gaussian
state pap. It follows that J,(p4:5) = 0, as it coincides
exactly with the Shannon continuous mutual information
of the Wigner function of p,p, which is positive semi-
definite. The expression in Eq. (9), which is analogous to
the more familiar von Neumann one [Eq. (2)], has, thus, a
precise operational interpretation as the amount of extra
discrete information (measured in natural bits) that needs
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to be transmitted over a continuous variable channel to
reconstruct the complete joint Wigner function of p,p
rather than just the two marginal Wigner functions of the
subsystems [45,46]; in short, J,(p,:5) measures the total
quadrature correlations of p4p.

We can then enquire whether a more general property
such as the strong subadditivity inequality (1)—which
would independently imply the non-negativity of J,—
holds in general for S, in the Gaussian scenario. Let
papc be a tripartite Gaussian state whose subsystems en-
compass an arbitrary number of modes. Writing its CM in
block form as in Eq. (8), and using the definition (5), we
have the following.

Theorem 1.—The Rényi-2 entropy S, satisfies the strong
subadditivity inequality for all Gaussian states ppc,

S2(pap) + S:(ppc) — Sa(pasc) — Sa2(pp)

o 1 ln(det'}’AB det')’Bc)
detypc detyp

2

Proof.—The result follows by applying a particular norm
compression inequality to the CM y,pc. Given a positive
Hermitian matrix A € M,,,, and given any two index sets
a, B C N =/{1,...,m}, the Hadamard-Fisher inequality
[49] states that detA,ypdetd qg = detA,detAg.
Recalling that any CM y,pc is a positive real symmetric
matrix [50], the claim follows upon identifying o with
the indices of modes AB and B with the indices of
modes BC. |

Beyond its apparent simplicity, Theorem 1 has profound
consequences. It yields that the core of quantum informa-
tion theory can be consistently reformulated, within the
Gaussian scenario [24,25], using the simpler and physi-
cally natural Rényi-2 entropy as an alternative to the von
Neumann one. In the rest of this Letter we will focus on
defining GR2 quantifiers of entanglement and other corre-
lations for Gaussian states.

Gaussian Rényi-2 measures of correlations.—The GR2
entanglement &, can be defined as follows. Given an
n-mode bipartite Gaussian state p,z with CM vy,

=0. (10)

1
Expap) = inf 5 In(detor,). (11)

. io®'=osp=y,p
AB* detoyp=1

For a pure Gaussian state psp = | 45)(f 45!, the mini-
mum is saturated by @5 = Y45, S0 that E(h,.5) =
S>(pa) = % In(dety,), where y, is the reduced CM of
subsystem A. For a generally mixed state, Eq. (11)—where
the minimization is over pure n-mode Gaussian states with
CM o, smaller than y,p—amounts to taking the
Gaussian convex roof of the pure-state Rényi-2 entropy
of entanglement, according to the formalism of
Refs. [21,32]. Closed formulae for £, can be obtained for
special classes of two-mode Gaussian states [33,51,52]
exploiting the same procedure adopted for the Gaussian

entanglement of formation [32,48]. Like the latter measure
(and all Gaussian convex-roof entanglement measures), it
follows from the results of Ref. [32] that the GR2 entan-
glement is in general monotonically nonincreasing under
Gaussian local operations and classical communication,
and is additive for two-mode symmetric Gaussian states.
We can also introduce a ‘GR2 measure of one-way
classical correlations in the spirit of Henderson and
Vedral [35]. We define [7,(p ) as the maximum decrease
in the Rényi-2 entropy of subsystem A, given a Gaussian
measurement has been performed on subsystem B, where
the maximization is over all Gaussian measurements—i.e.,
those that map Gaussian states into (Gaussian states
[37,38]. Any such measurement on, say, the ng-mode
subsystem B = (B;...B,,), is described by a positive
operator valued measure [53] of the form I[lgz(n) =
W_"B[n;il WBj(nj)]Afg[[l'l?il W;/.(Uj)] where Wg(n;) =
exp(njls;r - njl;j) is the Weyl operator, l;j = (gp, +
ipg,)/~2, " [Tlp()d*"sm = 1,and A} is the density
matrix of a (generally mixed) nz-mode Gaussian state with
CM TI'Y} which denotes the seed of the measurement. The
conditional state py), of subsystem A after the measure-
ment ITz(n) has been performed on B has a CM #!!

independent of the outcome 1 and given by the Schur
complement [54]

Y =vs—saplys + T sk, (12)

where the original bipartite CM vy, of the n-mode state
pap has been written in block form as in (8). We have then

) 1 detyA)
= =1 . 13
T 2(paip) SI%IPZ n(detf/};{ (13)

The one-way classical correlations [J,(pp|4), With mea-
surements on A, can be defined accordingly by swapping
A < B.

We can now define a Gaussian measure of quantumness
of correlations based on Rényi-2 entropy. Following
the seminal study by Ollivier and Zurek [34], and the
recent analysis of Gaussian quantum discord using von
Neumann entropy [37,38], we define the ‘GR2 discord’
as the difference between mutual information (9) and
classical correlations (13),

Dy(pap) = Io(pap) — T2(pais)

1 (detyB det'i/};[)

=inf- In
[‘gl 2 det’yAB

(14
For the case of A and B being single modes, that is,
pap being a general two-mode Gaussian state, closed for-
mulae can be obtained for Eqs. (13) and (14) thanks to the
results of Ref. [37]. We report them in the Supplemental
Material [48] for completeness. We remark that Theorem
1 is crucial to guarantee the non-negativity and the
faithfulness of the GR2 discord [55-57]. Notice also that
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%12(pA:B) = jz(PAu;) = Dz(PAu;) = S(py) for pure bi-
partite Gaussian states p4p.

A trade-off relation between the entanglement &£, and
the classical correlations J, can be written for arbitrary
tripartite pure Gaussian states p 4pc [37], following Koashi
and Winter [59]. One can essentially exploit the fact that all
possible Gaussian positive operator valued measures on B
induce all possible Gaussian pure-state decompositions of
the subsystem AC (see also Ref. [16]), which implies

Sa2(pa) = T2(pajp) + E(pa:c)- (15)

This relation can be manipulated to express the “‘conser-
vation” of different types of correlations in a generic pure
tripartite Gaussian state p4pc, along the lines of Ref. [60].

We now look at monogamy properties of the GR2 mea-
sures. For an entanglement monotone E and an n-partite
state p4 4,4, the monogamy relation (choosing party A,
as the focus), which constrains the distribution of bipartite
entanglement among different splits, can be written as
Ref. [15] E(pa,:a,..a,) = 2= E(pa,:a,) = 0. The Rényi-
2 entanglement measure [13,17], as well as the tangle
(squared concurrence) [15,16], satisfy this inequality for
general n-qubit states. A Gaussian version of the tangle
(based on squared negativity) has been defined that obeys
the inequality for all n-mode Gaussian states [40]. We now
show that £, does too.

Theorem 2.—The GR2 entanglement defined in Eq. (11)
is monogamous for all n -mode Gaussian states p4 4, 4,

Epa,iayn,) = 22 E2(pasa) =0, (16)

where each A; comprises one mode only.

Proof.—The structure of the proof follows closely the
one for the tangle of n-qubit systems [16]. It suffices to
prove the inequality for tripartite Gaussian states py 4, A,
where A/ comprises n — 2 modes (with n arbitrary), as
iterative applications to &y(pa,:a;) would then imply
Eq. (18). It is further enough to prove the inequality on
pure states, as it would then extend to mixed ones by
convexity [15,16,39,40]. Exploiting the phase-space
Schmidt decomposition [21,43,61], when p A1 is pure,
the state of subsystem A} is locally equivalent to a 2-mode
state, tensored by n-4 irrelevant vacuum modes. The prob-
lem reduces to proving that E(p4:pc) = E(pa:p) +
E,(p4:¢) for an arbitrary pure Gaussian state p4pc, where
A and B are single modes, while C groups two modes.
Noting that £,(ps:pc) = Sa(p4), and exploiting Eq. (15),
we see that Eq. (16) is verified if one establishes that

T 2(pap) = E(pazp) (17

holds for all (mixed) two-mode Gaussian states p,p. The
inequality (17) is proven in the Supplemental Material
[48], which concludes the proof of the Theorem. |

Let us analyze in detail the case of py 4,4, being a pure
3-mode Gaussian state, whose CM is characterized up to

local unitaries by three parameters (local symplectic invar-
iants) a; = 1, with Sz(ij) =1Ing; (j =1, 2, 3) [48,52].
We define the residual entanglement emerging from the
monogamy inequality as &,(pa,:a,:4,) = E2(Pa,:a,4,) —
Ey(pa,:a,) — E2(pa,:a,). This quantity, which can be cal-
culated exactly [39,52], depends in general on the focus
mode (say A;) chosen for the decomposition of the bipar-
tite entanglements. Remarkably, we find that for all pure
three-mode Gaussian states which are fully inseparable and
display entanglement in all global and reduced bipartitions
(52(pAi:Aj) > O, EZ(pAHA,-Ak) > O, YV i# _] # k), the resid-
ual GR2 entanglement &;(p4,:a,:4,) is invariant under
mode permutations, thus representing (to the best of our
knowledge) the first and only known intrinsically bona fide
measure of genuine tripartite Gaussian entanglement [62].
We report its explicit formula here, while a derivation is
provided in Ref. [48],

Ey(pa,:ay:a,) = In(8aazaz) — ln[—l Ve

3
Y @ap) as)

3
+ Y (2a? —af) +
i=1 i#j=1
with & = [T, ,—ollar + (=D*ay + (=1)"az}* — 1}
The formula (18) holds when |a; — a;| + 1 < a; < (a? +
a — )2,

We finally remark that, importantly, the GR2 discord
Eq. (14) also turns out to be a monogamous measure of
quantum correlations for arbitrary pure three-mode
Gaussian  states  py 4,4, (unlike the von Neumann
entropy-based discord [37,38,41]). By using Eq. (15),
one finds (see also Refs. [59,60]) D,(pa :a,:a,) =
DZ(pA2|A2A3) - D2(pA,|A2) - D2(pA1|A3) = 52(PA,:A2:A3)-
In other words, the residual tripartite discord equates the
residual tripartite entanglement for pure py 4,4,. This ex-
tends to the multipartite case the equivalence between
entanglement and general quantum correlations valid for
pure bipartite states [34,64,65], and places D, as the only
known measure of quantumness beyond entanglement in
continuous variable systems that fulfills monogamy [66].

Conclusions.—In this Letter we planted the seeds for a
full Gaussian quantum information theory [25] using the
Rényi-2 entropy S,. This is possible thanks to the fact,
proven in Theorem 1, that such an entropy satisfies the
strong subadditivity inequality for arbitrary Gaussian states
of quantum harmonic systems. We employed S, to define
valid measures of entanglement, total, classical, and
quantum correlations, highlighting their properties. The
Rényi-2 mutual information is intimately related to
Wigner distribution sampling by homodyne detections in
phase space. The residual Rényi-2 entanglement measure
allows for a quantification of genuine tripartite entangle-
ment in three-mode fully inseparable pure Gaussian states,
which is invariant under mode permutations. We argue that
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the measures defined in this Letter should be adopted as
privileged tools to address the quantification of relevant
correlations in Gaussian states. A very recent application to
relativistic quantum information has been reported [68].

By conception, this work has been biased towards
Gaussian states and operations. However, the approach
pursued here can be extended to arbitrary, even non-
Gaussian n-mode states p of continuous variable systems,
provided one chooses the Wehrl entropy [6] to quantify the
informational content of p. Such an entropy is operation-
ally associated to phase-space sampling via heterodyne
detections [45] as it corresponds to the continuous
Boltzmann-Gibbs-Shannon entropy of the Husimi Q dis-
tribution of p, Q(a) = 7 a|pla), which is a valid
(non-negative) probability distribution for all quantum
states [1]. One can then adopt a distance measure between
any two p; and p, in terms of the relative Shannon entropy
between their respective Q distributions, define ensuing
correlation measures, and so on. Such a formalism could
also accommodate a measure of non-Gaussianity of quan-
tum states [69], and one might then naturally compare
Gaussian with non-Gaussian operations for the realization
of specific tasks [27] such as extracting classical correla-
tions [70,71], maximizing information-disturbance trade
off [72] and performing optimal cloning of coherent states
[73]. This will be the subject of further study.
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