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Determining the optimal implementation of a quantum gate is critical for designing a quantum computer.

We consider the crucial task of efficiently decomposing a general single-qubit quantum gate into a

sequence of fault-tolerant quantum operations. For a given single-qubit circuit, we construct an optimal

gate sequence consisting of fault-tolerant Hadamard (H) and �=8 rotations (T). Our scheme is based on a

novel canonical form for single-qubit quantum circuits and the corresponding rules for exactly reducing a

general single-qubit circuit to our canonical form. The result is optimal in the number of T gates. We

demonstrate that a precomputed epsilon net of canonical circuits in combination with our scheme lowers

the depth of approximation circuits by up to 3 orders of magnitude compared to previously reported results.
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Introduction.—Quantum algorithms can be described by
unitary transformations and projective measurements of a
quantum state vector. A unitary transformation can be
described by a sequence of unitary matrices, each of which
we call a quantum gate. A sequence of one or more
quantum gates is called a quantum circuit. A quantum
circuit representing a quantum algorithm uses general
quantum gates, despite potential challenges with their
physical implementations. Therefore, a scalable quantum
computer will require the processing of a general quantum
gate into a fault-tolerant, implementable sequence of quan-
tum gates. Various techniques for decomposing quantum
gates into a sequence of gates drawn from an implement-
able set, called a discrete gate set, are known [1–5].
However, it is crucial that the resulting gate sequence be
an optimal implementation in which resources such as
circuit depth, the number of gates, or the number of qubits
are minimized. Achieving lower complexity gate sequen-
ces is necessary in order to achieve shorter execution time
as well as a smaller probability of error.

In this Letter, we address the challenge of optimally
decomposing quantum circuits that act on a single qubit.
To produce optimal gate sequences, we derive a canonical
form for single-qubit unitaries and corresponding rules for
reducing a single-qubit circuit into our canonical form. We
then develop an algorithm for finding an exact, resource-
optimal decomposition of a single-qubit gate, if it exists; if
it does not exist, our algorithm finds an approximation with
precision � that significantly reduces the resource cost of
the circuit. We choose to decompose into the gate library of
Hadamard (H) and �=8 (T) rotations, denoted as fH; Tg,
since these gates can be implemented fault tolerantly in the
Steane code [6] and the surface code [7], both of which
have been shown to yield high error thresholds. We choose
to minimize the number of T gates, called the T count of
the sequence, since the fault-tolerant implementation of T
is significantly more expensive than the H gate. Our
approach simultaneously reduces circuit depth.

Background.—Decomposition of a single-qubit quan-
tum circuit most often results in a gate sequence that is
approximately equal to the original gate, while exact
equivalence is achieved in rare cases. When exact decom-
position is possible, Amy et al. [8] provide an algorithm for
decomposing the quantum circuit into a depth-optimal gate

sequence in time OðdjBjd=2Þ, where d is the circuit depth
and B is the basis of gates. For single-qubit circuits, our
technique improves the runtime and finds an exact decom-

position in time Oðdþ jBjd=4Þ, for B ¼ fH; Tg.
When exact equivalence is not possible or when the

circuit must be resource optimized at the expense of pre-
cision, the Solovay-Kitaev theorem [4] guarantees that any
single-qubit circuit can be approximated to precision �
with a gate sequence of depth �ðlogcð1=�ÞÞ, where c is a
small constant. Dawson and Nielsen [9] developed an
algorithm to find an approximation with precision � in
time Oðlog2:71ð1=�ÞÞ. Their algorithm begins with a base
approximation to a single-qubit circuit and proceeds recur-
sively n times, resulting in a circuit that grows in depth as
Oð5nÞ, where n depends on the desired level of precision.
Optimizing the base approximation is especially important
since the resulting circuit heavily depends on the base
circuit; if a base circuit has suboptimal cost, then this
inefficiency is amplified upon recursion. Fowler gives an
exponential-time algorithm (albeit much faster than brute-
force search) for improving the base circuit [10,11] that
finds its depth-optimal �-approximation.
Our optimization scheme is based on a canonical form

for single-qubit circuits and can be used for the base
approximation in the Dawson-Nielsen algorithm. Our ca-
nonical form is similar in spirit to the normal form for
single-qubit circuits over the fH; Tg gate library given by
Matsumoto and Amano [12]. However, their normal form
is expressed in SUð2Þ, which contains a nontrivial two-
element center that makes the algebra sensitive to the sign
of the global phase. In contrast, our canonical form uses
group identities in the projective special unitary group
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PSUð2Þ, allowing further optimization of quantum circuits.
More formally, it is a unique representative of a double
coset of circuits with respect to the Clifford group. By
expressing a circuit in its canonical form, we can compress
its circuit depth and minimize its T count.

A canonical form and canonical reduction of circuits.—
We introduce our canonical form and rules for reducing a
single-qubit quantum circuit to its canonical form.
Throughout, we use � to represent gate composition. We
use f�g to indicate the basis elements of a group and h�i to
indicate the group generated by those elements, where here
elements are single-qubit quantum gates.

We begin with PSUð2Þ representations of the Hadamard
gate H and the �=8-gate T,

H ¼ i=
ffiffiffi
2

p
i=

ffiffiffi
2

p
i=

ffiffiffi
2

p �i=
ffiffiffi
2

p
" #

; T ¼ e�i�=8 0
0 eþi�=8

" #
:

The phase gate S ¼ T2 and the Hadamard gate H
together generate a 24-element subgroup in PSUð2Þ. We
denote this group, the Clifford group, as C.

We introduce the following two circuits, which we call
syllables, each of which are composed of two quantum
gates: TH ¼ T:H and SH ¼ S:H. In PSUð2Þ, syllable TH
is a group element of infinite order (see Sec. 4.5.3 in
Ref. [13]), whereas syllable SH is a group element of order
3, SH:SH:SH ¼ ðSHÞ3 ¼ I.

Consider the set of all circuits generated by various
compositions of TH and SH. We note that the basis of
gates fTH; SHg is equivalent to the basis of gates fH; Tg
due to the following identities:

H ¼ THðSHÞ2TH; T ¼ ðTHÞ2ðSHÞ2TH:

Since SH3 ¼ I, any circuit in hTH; SHi with subsequences
ðSHÞk, where k > 2, can be immediately reduced to a
circuit limited to k ¼ 1 or 2. Furthermore, since
THðSHÞ2TH ¼ H, it is intuitively clear that ðSHÞ2 should
not occur in a well-formed circuit. We further find that even
single occurrences of SH can be algebraically removed
from the initial segment of a circuit.

Definition. A nonempty circuit in hTH; SHi is said to be
normalized if it ends with TH and does not explicitly
contain ðSHÞ2. A normalized circuit is either the identity
I or a nonempty normalized circuit.

In other words, a normalized circuit is either the identity
I or follows one of two patterns, n:TH or n:SHTH, where
n is a shorter normalized circuit.

Definition. A normalized circuit is said to be canonical
if it does not contain SH earlier than the fifth syllable.

The shortest canonical circuit that contains SH is
ðTHÞ4:SH:TH.

Proposition 1. Each hH; Ti circuit U can be represented
as either U ¼ n:g or U ¼ H:n:g, where n is a normalized
circuit and g 2 C. This representation is built at a cost
linear in the length of U.

The proof of this proposition is based on the H, S
representation of the C group. See Supplemental Material
at Ref. [14] for the proof, the H, S representation of C, and
a set of C=T commutation relations.
It is important to note that, as per the SH:T ¼

H:SH:TH:S:SH relation, given a normalized circuit n
starting with TH, SH:n can be rewritten as H:SH:n0 where
n0 is a normalized circuit.
Proposition 2. Each hH; Ti circuit U can be represented

asU ¼ g1:c:g2, where c is a canonical circuit and g1, g2 2
C. This representation is built at a cost linear in the length
of U.
Proof. The proof is based on special PSUð2Þ relations.

See Supplemental Material at Ref. [14] for the list
of relations. These relations imply that a normalized
circuit with T count 0< t � 4 can be written as n ¼
g1:ðTHÞt�1:T:g2, where g1, g2 2 C.
Consider U ¼ ½H:�½SH:�n:g, where n is a normalized

circuit starting with the TH syllable. The ½�� indicates two
possible cases: presence or absence of the term.We assume

that the normalized circuit n has T count t > 4. Consider
the shortest prefix of the circuit n spanned by its leftmost

four TH syllables and apply one of the transformations

from the list of relations to that prefix, thus obtaining the

reduction U ¼ g1:ðTHÞ3:T:ðg0:HÞ:n0:g, where g1, g 2 C,
n0 is a normalized circuit, T countðn0Þ> 0, and

g0 2 fI; X; Z; S; Sy; Z:X; S:X; Sy:Xg.
We consider the (Proposition 1) normalization V of

ðg0:HÞ:n0:g, rewritten to start with either H or TH.
In the case where n0 starts with TH, V can start with TH

only if (g0:H) commutes with T. In the case where n0 starts
with SH:TH, V can start with TH only if (g0:H:SH)
commutes with T. By inspection of the commutation table,
we conclude that neither of these can happen and therefore
V cannot start with TH.
Thus, V starts with H and g1:ðTHÞ3:T:V is the desired

canonical form. j
Definition. The T count of a normalized circuit n is the

number of TH syllables in n.
T count is an invariant of the gate represented by a

canonical circuit, which follows from Theorem 1 below.
The importance of canonical circuits stems from the fact
that they enumerate the double C cosets of hH; Ti, which
also follows from Theorem 1:
Theorem 1. If c1, c2 are C-equivalent canonical circuits,

i.e., 9g1; g2 2 C such that c2 and g1:c1:g2 evaluate to the
same gate in PSUð2Þ, then c1 and c2 are equal as hTH; SHi
circuits.
We outline a proof of this theorem.
Proof. We prove by contradiction that if a normalized

circuit n evaluates to a circuit g 2 C, then n ¼ g ¼ I. Let
n be a normalized circuit with T countðnÞ> 0.
Consider the adjoint action of PSUð2Þ on its Lie

algebra L¼ suð2Þ, where adu½m�¼u:m:uy, u 2 PSUð2Þ,
m 2 L.L is spanned over R by the Pauli matrices X, Y, Z.
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The adjoint action of the C subgroup on L is the sym-
metry group of the octahedron with vertices at �X, �Y,
�Z. In particular, for each g 2 C, adg½Z� must be one of

these vertices. To obtain a contradiction, it suffices to show
that for a nonidentity normalized circuit n, adn½Z� cannot
be in f�X;�Y;�Zg.

Let A 2 L be a matrix over Z½ 1ffiffi
2

p � represented as

ð ffiffiffi
2

p ÞlA¼ ðx0 þ x1
ffiffiffi
2

p ÞXþ ðy0 þ y1
ffiffiffi
2

p ÞYþ ðz0 þ z1
ffiffiffi
2

p ÞZ;
where x0, x1, y0, y1, z0, z1 are integers.

We show that if A ¼ adn½Z�, then (1) x0 is odd and
(2) y0, z0 have the opposite parity. Property (1) implies that
the coefficient at X is nonzero, and property (2) implies
that at least one other coefficient (at Y or at Z) is nonzero;
together they imply that adn½Z� cannot be proportional to
any one Pauli matrix.

We prove the desired properties (1) and (2) by induction
on the T count of n. By direct computation,

adTH½X� ¼ Z;

adTH½Y� ¼ ðX � YÞ= ffiffiffi
2

p
;

adTH½Z� ¼ ðX þ YÞ= ffiffiffi
2

p
;

adSHTH½X� ¼ Y;

adSHTH½Y� ¼ ð�Xþ ZÞ= ffiffiffi
2

p
;

adSHTH½Z� ¼ ðX þ ZÞ= ffiffiffi
2

p
;

and, in particular, properties (1) and (2) hold for

adTH½Z� ¼ ðX þ YÞ= ffiffiffi
2

p
(x0 ¼ 1, y0 ¼ 1, z0 ¼ 0).

Given matrix A 2 L presented as above, we have

ð ffiffiffi
2

p Þlþ1adTH½A� ¼ ½ðy0 þ z0Þ þ ðy1 þ z1Þ
ffiffiffi
2

p �X
þ ½ðz0 � y0Þ þ ðz1 � y1Þ

ffiffiffi
2

p �Y
þ ð2x1 þ x0

ffiffiffi
2

p ÞZ;
ð ffiffiffi

2
p Þlþ1adSHTH½A� ¼ ½ðz0 � y0Þ þ ðz1 � y1Þ

ffiffiffi
2

p �X
þ ð2x1 þ x0

ffiffiffi
2

p ÞY þ ½ðy0 þ z0Þ
þ ðy1 þ z1Þ

ffiffiffi
2

p �Z:
By induction, y0, z0 have opposite parity; therefore, the

new x0 that is equal to either y0 þ z0 or z0 � y0 is odd in
both cases. In the expression for adTH½A�, the new y00 ¼
z0 � y0 is odd, but the new z00 ¼ 2x1 is even. In the

expression for adSHTH½A�, the new y00 ¼ 2x1 is even, but

the new z00 ¼ y0 þ z0 is odd.
Since each nontrivial normalized circuit is either n1:TH

or n1:SHTH, where n1 is a shorter normalized circuit, this
concludes the induction. j

The remainder of the proof is based on the following two
lemmas:

Lemma 1. Let n be a normalized circuit that is either I or
starts with TH. Let u be any hTH; SHi circuit that

evaluates to the same gate as n. Then n is equal to the
normalization of u.
Lemma 2 [15]. Let n be a normalized circuit, and let g1,

g2 2 C. If both n and normalization of g1:n:g2 start with
ðTHÞ4, then g1 ¼ I.
We note that Theorem 1 is trivially true for canonical

circuits of T count � 4. Thus. we assume that both c1 and
c2 start with ðTHÞ4.
By Lemma 1, c2 is equal to the normalization of

g1:c1:g2, and hence g1 is the identity per Lemma 2. Since
c1:g2 is its own normalization, c2 ¼ c1:g2. Finally, g2 is a
suffix of c2 and thus a normalized circuit of T count zero,
i.e., g2 ¼ I.
In our proposed canonical form, we have minimized the

T count of the circuit. The T count and circuit depth are
closely tied; e.g., in an fH;Tg canonical form there are at
least T count�1 and at most T countþ1 Clifford gates in
the sequence, and all but at most two of these gates are

either H or HSH ¼ ffiffiffiffi
X

p
. Thus, when minimizing T count

we in turn also optimize for circuit depth.
Approximation of single-qubit circuits.—We can use our

canonical form and reduction rules to produce an opti-
mized gate sequence that approximates a single-qubit cir-
cuit to precision �. First, we build a database of canonical
circuits by iterating over T count; in practice, the database
can be used to perform exact or approximate circuit
decomposition. Throughout, we compute precision � using
the trace distance between single-qubit circuits U and V,
although different distance measures can be used:

dist ðU;VÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� jtrðU:VyÞj

2

s
:

The following remarkable observation leads to an effi-
cient algorithm for finding an � approximation:
Corollary 1. Given a single-qubit gate U 2 PSUð2Þ, U

can be � approximated with an hH; Ti circuit with T count
<t if and only if one of the gates in the double coset
C:U:C ¼ fg1:U:g2jg1; g2 2 Cg can be � approximated by
a canonical circuit with T count <t.
It follows that the optimal � approximation of U under a

certain T count t is immediately derived from the optimal �
approximation of some gate G 2 C:U:C under T count t.
There, at most jCj2 ¼ 576 gates in C:U:C, and for the
majority of targets U the double coset consists of small
groups of elements at significant distance from each other.
Thus, distinct values in fjtrðU:gÞjjg 2 Cg typically differ
by more than 8�, which suggests that the search for an �
approximation can be run on parallel threads, each search-

ing over Oð�2t=2Þ candidates.
This is a foundation for an efficient implementation of

an � net of hH; Ti circuits (described in detail in Ref. [16]).
We have built such an � net for � ¼ 0:002 with memory
footprint below 45 MB, which includes circuits with T
count <26. The use of such an � net within an algorithm
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for Solovay-Kitaev decomposition dramatically improves
the precision and resource cost of the output circuit.

Recall that the Dawson-Nielsen (D-N) algorithm to
perform Solovay-Kitaev decomposition [9] is recursive,
and finer approximations require greater recursion depth.
At depth 0, D-N returns an extrinsic ‘‘basic’’ approxima-
tion of a single-qubit gate U. At depth n, it composes an
approximation from the depth n� 1 approximation Un�1

and the depth n� 1 approximations of two auxiliary ma-
trices Vn�1 and Wn�1 such that the resulting n approxima-
tion is given by

Un ¼ Vn�1:Wn�1:V
y
n�1:W

y
n�1:Un�1: (1)

According to the D-N estimate (Sec. 3, Eq (1) in
Ref. [9]), tightening the basic approximation precision by
a factor of 10 should lead to precision improvement by a
factor close to 10�6 at recursion depth 4. Experimental
evaluation of our implementation based on the above � net
with T count <26 agrees with this estimate and delivers
approximation precisions in the 10�8 range at recursion
depth 3. Evaluating approximations at higher recursion
depth requires extended arithmetic beyond machine-
defined double type.

We use our database and canonical form scheme to
obtain an optimized base approximation and compare the
T count and precision of D-N using our base approxima-
tion and the original base approximation [9]. We created
three canonical circuit databases of varying size from
which to determine the optimized base approximation;
they store circuits up to T count 24, 25, and 26. Figure 1
plots the T count versus the mean precision �, where the
mean is calculated over the approximation of 10 000 ran-
dom unitary gates, and the points indicate recursion levels
n ¼ 0, 1, 2, 3, for our method and the baseline. Both axes
in the graph are plotted on the logarithmic scale.

First, we remark that there is no visible distinction
between the performance of databases of size T count 25
and 26. Second, for a given precision �, we produce gate
sequences with up to 3 orders of magnitude fewer T’s than
the baseline approach. For example, at precision � ¼
5� 10�4, we achieve aT count on the order of 102, whereas
the baseline is on the order of 105. Third, for a givenT count,
we achieve gate sequences that are up to 3 orders of magni-
tude more precise than the baseline approach. At T count
100, our scheme produces a gate sequence with precision
around 10�4, whereas the baseline has precision around
10�1. These improvements are crucial when considering
that optimization of the depth and T count significantly
affects the execution time and number of errors in a physical
implementation of the circuit. With our optimization
scheme, previously infeasible quantum circuits may be
one step closer to being implemented in a physical device.
Another application of our database and canonical form

is to consider ‘‘lossy’’ circuit optimization, where the task
is to determine if for a slight decrease in precision � there
exists an �-approximate circuit that requires even fewer
resources. We can use a database of canonical circuits to
answer this question, and the complexity of searching this
database is significantly reduced due to the following
theorem:
Theorem 2. Canonical circuits with distinct T counts

evaluate to unitary matrices with distinct matrix traces.
See Supplemental Material at Ref. [14] for the proof

sketch. The theorem implies that if a trace level Lt ¼ fU 2
PSUð2ÞjjtrðUÞj ¼ tg contains several canonical circuits, all
of these circuits have the same T count. It reduces the
question to searching over different trace levels for a more
optimized circuit. The implication of such a search for
optimized circuits is an open research question.
Conclusion.—In summary, we have defined a resource-

optimal canonical form and corresponding rules to reduce
a single-qubit quantum circuit to our canonical form.
Given a single-qubit circuit, our scheme can be used to
produce a gate sequence that is exactly equivalent and uses
a minimal number of T gates, or it can be used to determine
a resource-optimal base approximation. Our database of
canonical circuits is significantly smaller in memory than
previous methods [10,11]. When using our technique
within the D-N algorithm, we achieve up to 3 orders of
magnitude improvement in both precision and T count over
the baseline. One future direction, as previously men-
tioned, is to consider lossy circuit optimization. Another
future direction is to generalize the definition of a canoni-
cal form to other libraries of gates and, furthermore, to
extend the form to n-qubit circuits.
We thank Dave Wecker, Burton Smith, Michael

Freedman, Zhenghan Wang, John Platt, Austin Fowler,
and Peter Selinger for useful discussions. We also thank
Rodney Van Meter and Nathan Cody Jones for sharing the
baseline D-N data.

FIG. 1 (color online). T count versus mean precision � (trace
distance) of the approximation of 10 000 random unitaries, for
recursion levels n ¼ 0, 1, 2, 3. The markers indicate recursion
level n.
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