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The minimum achievable statistical uncertainty in the estimation of physical parameters is determined

by the quantum Fisher information. Its computation for noisy systems is still a challenging problem. Using

a variational approach, we present an equation for obtaining the quantum Fisher information, which has an

explicit dependence on the mathematical description of the noise. This method is applied to obtain a

useful analytical bound to the quantum precision in the estimation of phase-shifts under phase diffusion,

which shows that the estimation uncertainty cannot be smaller than a noise-dependent constant.
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Introduction.—Quantum metrology [1–4] deals with the
estimation of parameters taking into account the con-
straints imposed by quantum laws. The estimation is based
on measurements made on probe systems undergoing a
parameter-dependent process. For a given measurement
scheme, the uncertainty in the estimation of a parameter
is limited by the Cramér-Rao bound, which is proportional
to the inverse of the square root of the so-called Fisher
information (FI) [5–7]. The maximization of FI over all
measurement strategies allowed by quantum mechanics
leads to a nontrivial quantity: the quantum Fisher informa-
tion (QFI). The determination of this quantity is central to
quantum metrology. It allows, for instance, the establish-
ment of ideal benchmarks for the statistical uncertainty in
the estimation of parameters, which can be used by exper-
imentalists to evaluate the performance of a real experi-
ment. A systematic approach to calculate the QFI, using
the symmetric logarithmic derivative (SLD) operator [1,2],
was developed in Ref. [3]. This approach has allowed
large advances on quantum metrology [8,9]. For unitary
processes, it leads to simple analytical expressions. This
is not the case, however, for noisy processes, which often
require numerical calculations.

When the unknown parameter is associated with a
physical process, the ultimate limit for the precision in its
estimation is given by a further maximization of the QFI
over all initial probe states (given some constraint, e.g. a
fixed average energy). These two maximizations make the
determination of that ultimate limit a laborious numerical
task. Recently, an alternative to solve this problem was
presented in Ref. [10]: given a mathematical description
of the quantum parameter-dependent process by a set of
Kraus operators [11], an upper bound to the QFI can be
calculated; the true value of the QFI is obtained by mini-
mizing this upper bound over all equivalent Kraus repre-
sentations of the process.

In this Letter, we present a variational approach, based
on purification techniques [12], to calculate the QFI
through the minimization of upper bounds. These upper
bounds correspond to the QFI associated with pure states

in the enlarged Hilbert space of all purifications of the
original probe state. An important advantage of our
approach is that it results in a general prescription for
performing that minimization: beginning with an arbitrary
purification of the probe state, the optimum purification
that minimizes these upper bounds and yields the QFI
can be found through the solution of a Sylvester equation
[13]. Such a prescription, which leads to an alternative way
of expressing the quantum Fisher information, actually
solves the minimization problem posed in Ref. [10]. As a
concrete example, we use this approach to delimit the
ultimate precision bounds on the estimation of phase-shifts
in the presence of phase-diffusion. This problem was
addressed recently in Ref. [14], where these bounds were
found numerically for initial Gaussian probe states, and
posteriorly confirmed experimentally in the special case of
initial coherent states [15]. Here, we show an analytical
and nontrivial lower bound for this quantum limit, which
is valid for any probe state. This bound reveals a drastic
effect of phase-diffusion on phase estimation: the accuracy,
even though dependent on the energy of the probe state,
cannot be better than a noise-dependent constant.
QFI by a variational approach.—The estimation of a

parameter is based on experimental results of measure-
ments on a quantum probe state, after it has been submitted
to a physical operation that depends on the value of the
parameter. Usually, it is previously assumed that the
possible values of the parameter to be estimated, denoted
here by x, lie within a certain continuous interval. It is
also assumed that one knows the precise dependence of
the physical operation on the value of the parameter x, so
that, for a given initial probe state, one knows the trans-
formed state �̂ðxÞ. Finally, one assumes a specific mea-
surement device, mathematically represented by positive

operator-valued measures fÊkg [12]. The goal, therefore,
is to obtain an accurate estimation, xestðkÞ, of the true
value xtrue of the unknown parameter, from a set of experi-
mental results k, using a given rule. The variance between
an estimate and any possible value of the parameter

is �x � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihðxest � xÞ2ip
, where h�i � P

kpkðxÞ� and
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pkðxÞ ¼ Tr½�̂ðxÞÊk�. Here, pkðxÞ is the probability of
obtaining the set of experimental results k given that the
parameter value is x. This variance may be considered a
merit quantifier for the estimation as a function of x.
For any unbiased estimation (i.e., hxesti ¼ x), the statistical
uncertainty is limited by the Cramér-Rao bound [6,7]. For
an experiment with � repetitions, this bound is given by

�x � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�FðxÞp

, where FðxÞ ¼ P
kpkðxÞ½d ln½pkðxÞ�=dx�2

is the FI. Under very general assumptions [5–7], it can
be shown that it is possible to saturate the Cramér-Rao
bound, at least in the asymptotic regime (� ! 1).

The QFI is defined by the maximum of the FI over all
possible measurement strategies allowed by quantum
physics:

F Q½�̂ðxÞ� ¼ max
fÊkg

F½�̂ðxÞ; fÊkg�: (1)

The respective quantum version of the Cramér-Rao in-

equality [16], �x � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�F QðxÞ

q
, settles, therefore, a limit

to the statistical uncertainty that cannot be overcome by
any strategy of estimation, for a given physical process and
quantum probe.

If the transformed probe state is pure, �̂ðxÞ ¼
jc ðxÞihc ðxÞj, the correspondent expression of the QFI is
[1–3,17]:

F Q½�̂ðxÞ� ¼ 4

�
dhc ðxÞj

dx

djc ðxÞi
dx

�
��������dhc ðxÞj

dx
jc ðxÞi

��������
2
�
:

(2)

If the state �̂ðxÞ is not pure, the SLD approach does not
lead in general to such a simple analytical expression. On
the other hand, it is always possible to enlarge the size of
the original Hilbert space S and build a pure state j�S;EðxÞi
in the enlarged space Sþ E that fulfills the condition
TrE�̂S;EðxÞ ¼ �̂SðxÞ, where �̂S;EðxÞ ¼ j�S;EðxÞih�S;EðxÞj,
and the trace is taken only on the E-Hilbert space [12].
We have added the label S to the state �̂ðxÞ of the system, in
order to distinguish it from states in space Sþ E. The state
j�S;EðxÞi is called a purification of �̂SðxÞ and the space E
may be interpreted as the Hilbert space corresponding to an
environment for system S.

Because taking the trace over E may be viewed as
discarding information on part of the total space Sþ E, a
physically motivated upper bound CQ ofF Q½�̂SðxÞ� can be
obtained:

CQ½�̂S;EðxÞ� � F Q½�̂S;EðxÞ� � F Q½�̂SðxÞ�; (3)

this inequality being valid for any purification of �̂SðxÞ.
Physically, this is due to the fact that when a system plus
an environment are monitored together, the information
obtained about an unknown parameter cannot be smaller
than the information acquired when only the system is
measured. Since CQ depends on the purification chosen,

the best upper bound that can be obtained with this strategy

is given by the minimum of CQ over all possible purifica-

tions of �̂SðxÞ. In the supplementary material of Ref. [10],
it is shown that this minimization can be performed on
the restricted set of all purifications of �̂SðxÞ belonging to
a given space Sþ E, as long as the dimension of E is at
least equal to the dimension of S, with this minimum being
equal to the QFI:

F Q½�̂SðxÞ� � min
fj�S;EðxÞig

CQ½�̂S;EðxÞ�: (4)

The minimization of CQ.—It is possible to determine the

value of QFI by minimizing the upper bound CQ over all

purifications of �̂SðxÞ in a given enlarged state space Sþ E
[10]. This is, in general, a challenging task and a concrete
prescription to do it would be welcome [18]. In the follow-
ing we present such a prescription. Our procedure starts
by establishing a relation between all purifications in a
given space Sþ E. As shown in Ref. [12], there is always
a unitary operator ûEðxÞ, acting effectively only on the E
space, that connects two purifications j�S;EðxÞi and

j�S;EðxÞi of the same state �̂SðxÞ:
j�S;EðxÞi ¼ ûEðxÞj�S;EðxÞi; (5)

where ûEðxÞ is a shorthand for the operator ûEðxÞ � ÎS,

and ÎS is the identity operator on space S. Therefore, given
a purification j�S;EðxÞi, the QFI may be found by mini-

mizing CQ½ûEðxÞ�̂S;EðxÞûyEðxÞ� over all unitary operators

on E space. The physical role of ûEðxÞ is to erase all
nonredundant information about the parameter x that has
been leaked from space S into the larger space Sþ E.

It will be useful to define a Hermitian operator ĥEðxÞ,
which acts effectively only in the E space, by

ĥ EðxÞ ¼ i
dûyEðxÞ
dx

ûEðxÞ; (6)

and another Hermitian operator ĤS;EðxÞ, which acts in the

whole Sþ E space, by

i
dj�S;EðxÞi

dx
¼ ĤS;EðxÞj�S;EðxÞi: (7)

Using the definitions above, we may write CQ as

CQ ¼ 4h½Ĥ ðxÞ � hĤ ðxÞi��2i�; (8)

where Ĥ ðxÞ ¼ ĤS;EðxÞ � ĥEðxÞ, and the averages are

taken over j�S;EðxÞi. From Eq. (8), we conclude that the

minimization of CQ over all unitary operators ûEðxÞ is

equivalent to the minimization of CQ over all Hermitian

operators ĥEðxÞ that act on E space. This minimization is
a mathematical optimization problem in positive semide-
finite quadratic programming, which can be efficiently

solved numerically [19], since the operator ĥEðxÞ appears
as a quadratic function in CQ. Thereupon, it is possible

to find an equation for the optimum Hermitian operator

PRL 109, 190404 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

9 NOVEMBER 2012

190404-2



ĥ
ðoptÞ
E ðxÞ that minimizes CQ. Taking, without loss of gen-

erality, hĥðoptÞE ðxÞi� ¼ hĤS;EðxÞi�, one finds that:

ĥ
ðoptÞ
E ðxÞ�̂EðxÞ þ �̂EðxÞĥðoptÞE ðxÞ

2
¼ TrSfD½�̂S;EðxÞ�g; (9)

where �̂EðxÞ ¼ TrS½j�S;EðxÞih�S;EðxÞj� is the reduced den-
sity matrix in the E space, and D½�̂S;EðxÞ� is defined as:

D½�̂S;EðxÞ� � i

2

�
dj�S;Ei

dx
h�S;Ej � j�S;Ei dh�S;Ej

dx

�
: (10)

Equation (9), when expressed in terms of the matrices
associated to the corresponding operators, is a Sylvester
equation [13]. It depends only on the degrees of freedom

of E. After determining ĥ
ðoptÞ
E ðxÞ, the QFI may be finally

expressed as

F Q½�̂SðxÞ� ¼ CQ½�̂S;EðxÞ� � 4h½�ĥðoptÞE ðxÞ�2i�: (11)

This is a novel expression for the quantum Fisher infor-
mation, which relates it directly to the QFI corresponding
to a unitary evolution of the enlarged system, and shows
that the nonredundant information in j�S;EðxÞi about the
parameter x is given by four times the variance of ĥðoptÞE ðxÞ.
As compared to the expression for the QFI of the system
alone, given by the SLD approach, it displays explicitly the
mathematical description of the noise process, through the
purification j�S;EðxÞi.

The usefulness of this method is not restricted to obtain-
ing an equation for the exact evaluation of QFI. Since our
approach is variational, whenever it is too hard to find a
solution of Eq. (9), we may still obtain satisfactory and
nontrivial analytical upper bounds to QFI. Indeed, based

on (9), one may guess approximations for ĥ
ðoptÞ
E ðxÞ that

depend on variational parameters, so that the minimization

is made on subclasses of operators ĥEðxÞ. This procedure
leads to bounds for QFI, given by the minima of (8) over
these subclasses. It also allows an iteration procedure for
getting progressively better approximations to the QFI of
the system.

Phase estimation under phase diffusion.—The estima-
tion of phase shifts is a central problem in quantum optics,
metrology and quantum communication [14,15,20]. It is
important, for example, in the use of light interferometers
as part of detectors of gravitational waves [21]. When
planning such experiments, it is essential to take into
account the unavoidable influence of noise on the ultimate
precision limits. Besides photon losses, phase diffusion is
another relevant source of noise in optical phase measure-
ments and must be taken into account. For incoming
Gaussian states, a numerical study of the effect of phase
diffusion on the ultimate limit of precision for phase esti-
mation was presented in Ref. [14].

In the following, we apply our approach to this problem
in order to derive nontrivial analytical lower bounds to this
limit, which are valid for any probe state. For concreteness,
consider an initially pure probe state �̂S ¼ jc Sihc Sj,
corresponding to a generic harmonic oscillator, which
undergoes a phase shift � due to some physical process.
The resulting state of the probe, in the presence of
phase diffusion noise, may be represented, in the Markov
limit, by

�̂Sð�Þ ¼ X1
m;n¼0

�m;ne
�i�ðm�nÞ��2ðm�nÞ2 jmSihnSj; (12)

where �m;n is the matrix element of the initial probe state in

the Fock basis and � quantifies the degree of diffusion
present in the process (from � ¼ 0, corresponding to no
diffusion, to � ¼ 1 corresponding to maximum diffu-
sion). In order to obtain a possible purification of �̂Sð�Þ
based on physical insight, we consider an optical interfer-
ometer with a dispersive plate producing a difference of
phase � between its two arms, and model the phase
diffusion of the initial probe state through the effect of
the radiation pressure on one of the interferometer mirrors.
The interaction between the light field and the mirror is
taken as proportional to n̂Sx̂E, where n̂S is the photon
number operator and x̂E is the dimensionless position
operator of the mirror. In this model, the final state of the
combined system of the probe and the mirror is given by

j�S;Eð�Þi ¼ e�i�n̂Seið2�Þn̂Sx̂E jc Sij0Ei; (13)

where j0Ei is the initial state of the mirror, which we
assume to be the ground state of a quantum oscillator. It
is straightforward to see that this state is, indeed, a purifi-
cation of �̂Sð�Þ. The value of CQ½�̂S;Eð�Þ� may now be

calculated directly through Eq. (2): CQ ¼ 4�n2, where
�n2 is the variance of the photon number operator in the
initial probe state. Notice that this purification leads to a
trivial upper bound to the QFI of �̂Sð�Þ as it is equal to the
QFI in the absence of phase diffusion (� ¼ 0).
In order to obtain a tighter upper bound to the QFI of

�̂Sð�Þ, we consider possible approximations to ĥðoptÞE ð�Þ by
analyzing more closely Eq. (9). The reduced density matrix
of the mirror associated with the purification j�S;Eð�Þi is

�̂ E ¼ X1
n¼0

j�n;nj2ji
ffiffiffi
2

p
�niEhi

ffiffiffi
2

p
�nj; (14)

where ji ffiffiffi
2

p
�niE is a coherent state with amplitudeffiffiffi

2
p

�n. The right-hand side of Eq. (9) is TrSD½�̂S;E� ¼
½�ib̂E=ð2

ffiffiffi
2

p
�Þ��̂E þ i�̂E½b̂yE=ð2

ffiffiffi
2

p
�Þ�, where b̂E ¼

ðx̂E þ ip̂EÞ=
ffiffiffi
2

p
, with p̂E being the dimensionless momen-

tum operator of the mirror. Notice that the solution of

Eq. (9) for ĥ
ðoptÞ
E ð�Þ would be trivial if ib̂E were an

Hermitian operator. However, in the asymptotic regime,ffiffiffi
2

p
�n � 1, the operator p̂E=ð2�Þ when applied to �̂E
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produces a result quite similar to that of �ib̂=ð� ffiffiffi
2

p Þ. So,
we may guess that ûEð�;�Þ ¼ ei��p̂E=ð2�Þ (with � being a
variational parameter) would be a reasonable candidate to
erase part of nonredundant information in j�S;Eð�Þi. In
this case, the upper bound of QFI is:

CQ ¼ ð1� �Þ24�n2 þ �2=ð2�2Þ: (15)

The optimal value of � that minimizes CQ is �opt ¼
8�n2�2=ð1þ 8�n2�2Þ. Then, taking the inverse of the

square root of Copt
Q , one gets a nontrivial bound for the

precision of phase-shift estimation in the presence of phase
diffusion, valid for any input state:

�� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð�Copt

Q Þ
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

�

�
1

4�n2
þ 2�2

�s
: (16)

This inequality shows that the uncertainty in this estima-
tion is limited by a well-known formula for independent
noise sources, displaying clearly the effects of the intrinsic
probabilistic feature of quantummechanics, 1=ð4�n2Þ, and
of the genuine phase-diffusion noise, 2�2.

An important property of the bound shown above is the
presence of a constant term. This means that the presence
of phase diffusion is, in general, more detrimental to
phase-shift estimation than the presence of photon losses,
when the uncertainty goes to zero as the average number of
photons goes to infinity.

From (16), it follows that, for Gaussian states, one may
obtain a bound that depends explicitly on the average
photon number N:

Copt
Q � Cmax

Q �
�
2�2 þ 1

8NðN þ 1Þ
��1

; (17)

since, for these states, �n2 � 2NðN þ 1Þ.
We compare in Fig. 1 Cmax

Q with the maximum quantum

Fisher informationF max
Q obtained numerically in Ref. [14]

for the best Gaussian probe states with given average
photon numberN. Good qualitative and quantitative agree-
ments between them is observed for N up to 30, which is
the range considered in Ref. [14]. On the other hand, our
bound, being analytical, allows one to obtain a better in-
sight, for any value of N, on the ultimate limit for phase
estimation in the presence of phase diffusion. In particular,
the saturation of our bound when 16ðN�Þ2 � 1 is clearly
displayed.
Summary.—We have presented in this Letter a varia-

tional method to determine the quantum Fisher information
by minimizing upper bounds to this quantity, and have
given a general prescription to perform this minimization.
It bears all the advantages of variational methods, which
lead to useful analytical bounds in situations where an
exact solution cannot be found analytically. We have ap-
plied this method to phase-shift estimation in the presence
of phase diffusion and have obtained a nontrivial lower
bound to its statistical uncertainty. This bound, which
agrees with and goes beyond published numerical results,
shows that there exists a constant limit to this uncertainty,
which depends only on the strength of the phase diffusion.
We believe that the method proposed here might be very
useful in determining the fundamental precision limits in
quantum metrology in the presence of noise.
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