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We introduce a general and systematic theoretical framework for operational dynamic modeling

(ODM) by combining a kinematic description of a model with the evolution of the dynamical average

values. The kinematics includes the algebra of the observables and their defined averages. The evolution

of the average values is drawn in the form of Ehrenfest-like theorems. We show that ODM is capable of

encompassing wide-ranging dynamics from classical non-relativistic mechanics to quantum field theory.

The generality of ODM should provide a basis for formulating novel theories.

DOI: 10.1103/PhysRevLett.109.190403 PACS numbers: 03.65.Ta, 03.50.Kk, 03.65.Ca, 03.70.+k

Introduction.—One primary goal in science is to construct
models possessing predictive capability. This endeavor is
usually achieved by trial and error, with a proposed model
either subsequently revised or completely discarded if its
predictions do not agree with experimental results.
Generally such a process is slow; hence, automatization
has been attempted [1,2].

In this Letter, we develop a universal and systematic
theoretical framework for operational dynamic modeling
(ODM) based on the evolution of dynamical average val-
ues. As an illustration of ODM’s scope, we infer quantum,
classical, and unified quantum-classical mechanics. In
order to construct a system’s dynamical model, we first
postulate an associated kinematic description consisting of
two independent components: (i) the definition of the
observables’ average and (ii) the algebra of the observ-
ables. ODM applied to observable data, given in the form
of Ehrenfest-like theorems [see, e.g., Eq. (1)], returns the
dynamical model (see Fig. 1 in the Supplemental Material
[3] for a graphical summary). The system’s kinematic
description can also be deduced from complementary
experiments. For example, if the results of a sequential
measurement depend on the measurements’ order, then
the algebra of observables must be noncommutative [see
comments after Eqs. (3) and (13)]. Limited access to
experiments capable of firmly establishing the kinematics
does not preclude hypothesizing plausible kinematic
descriptions. Some of these hypotheses may be rejected
within ODM by revealing their incompatibility with
observable dynamical data [4].

In the spirit of ODM, starting from the Ehrenfest theo-
rems [Eq. (2)], we will obtain the Schrödinger equation if
the momentum and coordinate operators obey the canoni-
cal commutation relation, and the classical Liouville equa-
tion if the momentum and coordinate operators commute.
To establish a link between quantum and classical mechan-
ics, we introduce a generalized algebra of observables,

incorporating both quantum and classical kinematics, that
ultimately leads to a unified quantum-classical mechanics.
Most importantly, we will show that ODM is applicable to
a wide range of physical models from nonrelativistic clas-
sical mechanics to quantum field theories, thus making
ODM an important tool for formulating future models.
Preparing dynamical data.—In the current work, we

present the conceptual and theoretical framework of
ODM, putting aside issues of handling noise-contaminated
experimental data. Assume we have multiple copies of
either a quantum or classical system (without loss of gen-
erality we consider single-particle one-dimensional sys-
tems throughout). Suppose we can precisely measure
different copies of the particle’s coordinate x and momen-
tum p at times ftkgKk¼1. Upon performing ideal measure-

ments of the coordinate or momentum on the nth copy, we
experimentally obtain fxnðtkÞg and fpnðtkÞg, n ¼ 1; . . . ; N,
requiring a total of 2KN observations. Time interpolation
of these data points returns the functions xnðtÞ and pnðtÞ.
We may then calculate the statistical moments ½xðtÞ�l ¼
1
N

P
N
n¼1½xnðtÞ�l and ½pðtÞ�l¼ 1

N

P
N
n¼1½pnðtÞ�l for l¼1;2;3;...

We make the ansatz, resembling a Taylor series with
coefficients al, bl, ck;l, dl, el, and fk;l, that the first deriva-

tive of xðtÞ ¼ ½xðtÞ�1 and pðtÞ ¼ ½pðtÞ�1 satisfy
d

dt
xðtÞ ¼ X

l

ðal½xðtÞ�l þ bl½pðtÞ�lÞ þ
X
k;l�0

ck;l½xðtÞ�l½pðtÞ�k;

d

dt
pðtÞ ¼ X

l

ðdl½xðtÞ�l þ el½pðtÞ�lÞ þ
X
k;l�0

fk;l½xðtÞ�l½pðtÞ�k:

For nondissipative quantum and classical systems, these
relations reduce to

m
d

dt
xðtÞ ¼ pðtÞ; d

dt
pðtÞ ¼ �U0ðxÞðtÞ; (1)

where �U0ðxÞðtÞ ¼ P
ldl½xðtÞ�l.
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Kinematic description.—Generalizing Schwinger’s
motto ‘‘quantum mechanics: symbolism of atomic mea-
surements’’ [6], we add the adaptation that any physical
model is a symbolic representation of the experimental
evidence supporting it. The mathematical symbolism for
this purpose needs to be considered. A formalism special-
ized to describe a specific class of behavior (e.g., classical
mechanics expressed in terms of phase space trajectories)
can be effective, but it may be unsuitable for connecting
different classes of phenomena (e.g., unifying quantum and
classical mechanics). In this case a general and versatile
formalism is preferred. Building a formalism around
Hilbert space is a suitable candidate for this role. Hilbert
space is well understood, rich in mathematical structure,
and convenient for practical computations.

Consider the postulates: (i) The states of a system are
represented by normalized vectors j�i of a complex Hilbert
space, and the observables are given by self-adjoint opera-
tors acting on this space. (ii) The expectation value of a

measurable Â at time t is �AðtÞ ¼ h�ðtÞ ^jAj�ðtÞi. (iii) The
probability that a measurement of an observable Â at time t

yields A is jhAj�ðtÞij2, where ÂjAi ¼ AjAi. (iv) The state
space of a composite system is the tensor product of the
subsystems’ state spaces. Having accepted these postulates,
the rest—state spaces, observables, and the equations of
motion—can be deduced directly from observable data.
Importantly, these axioms are just the well-known quantum
mechanical postulates with the adjective quantum removed,
as j�i is a general state encompassing classical and quan-
tum behavior. We will demonstrate below that these postu-
lates are sufficient to capture all the features of both
quantum and classical mechanics as well as the associated
hybrid mechanics. Equation (1) rewritten in terms of the
axioms becomes

m
d

dt
h�ðtÞjx̂j�ðtÞi ¼ h�ðtÞjp̂j�ðtÞi;

d

dt
h�ðtÞjp̂j�ðtÞi ¼ h�ðtÞj �U0ðx̂Þj�ðtÞi:

(2)

Koopman and von Neumann [7,8] pioneered the recasting
of classical mechanics in a form similar to quantum me-
chanics by introducing classical complex valued wave
functions and representing associated physical observables
by means of commuting self-adjoint operators (for modern
developments and applications see Refs. [9–23]). Our op-
erational formulation is closely related to the approach
proposed in Ref. [24] and recently successfully imple-
mented for quantum state tomography [25,26]. Regarding
the developments of other operational approaches see
Ref. [27] and references therein.

Inference of classical dynamics.—Let x̂ and p̂ be self-
adjoint operators representing the coordinate and momen-
tum observables. The commutation relationship

½x̂; p̂� ¼ 0 (3)

encapsulates two basic experimental facts of classical kine-
matics: (i) the position and momentum can be measured
simultaneously with arbitrary accuracy, and (ii) observed
values do not depend on the order of performing the mea-
surements. In terms of our axioms, the dynamical observa-
tions of the classical particle’s position and momentum are
summarized in Eq. (2).
We now derive the equation of motion for a classical

state. The application of the chain rule to Eq. (2) gives

hd�=dtjx̂j�i þ h�jx̂jd�=dti ¼ h�jp̂=mj�i;
hd�=dtjp̂j�i þ h�jp̂jd�=dti ¼ h�j �U0ðx̂Þj�i;

(4)

into which we substitute a consequence of Stone’s theorem
(see Sec. I of Ref. [3]),

ijd�ðtÞ=dti ¼ L̂j�ðtÞi; (5)

and obtain

imh�ðtÞj½L̂; x̂�j�ðtÞi ¼ h�ðtÞjp̂j�ðtÞi;
ih�ðtÞj½L̂; p̂�j�ðtÞi ¼ �h�ðtÞjU0ðx̂Þj�ðtÞi: (6)

Since Eq. (6) must be valid for all possible initial states, the
averaging can be dropped, and we have the system of

commutator equations for the motion generator L̂,

im½L̂; x̂� ¼ p̂; i½L̂; p̂� ¼ �U0ðx̂Þ: (7)

Since p̂ and x̂ commute, the solution L̂ cannot be found by

simply assuming L̂ ¼ Lðx̂; p̂Þ (regarding the definition of
functions of operators see Sec. II of Ref. [3]). We add into

consideration two new operators �̂x and �̂p such that

½x̂; �̂x� ¼ ½p̂; �̂p� ¼ i; (8)

and the other commutators among x̂, p̂, �̂x, and �̂p vanish.

The need to introduce auxiliary operators arises in classical
dynamics because all the observables commute; hence, the
notion of an individual trajectory can be introduced (see
also Sec. VIII in the Ref. [3]). Moreover, the choice of the
commutation relationships (8) is unique. Equation (8) can
be considered as an additional axiom. Now we seek the

generator L̂ in the form L̂ ¼ Lðx̂; �̂x; p̂; �̂pÞ. Utilizing

Theorem 1 from Ref. [3], we convert the commutator
equations (7) into the differential equations

mL0
�x
ðx; �x; p; �pÞ ¼ p; L0

�p
ðx; �x; p; �pÞ ¼ �U0ðxÞ; (9)

from which, the generator of classical dynamics L̂ is found
to be

L̂ ¼ p̂�̂x=m�U0ðx̂Þ�̂p þ fðx̂; p̂Þ; (10)

where fðx; pÞ is an arbitrary real-valued function.
Equations (5), (8), and (10), represent classical dynamics
in an abstract form.
Let us find the equation of motion for jhpxj�ðtÞij2 by

rewriting Eq. (5) in the xp representation (in which x̂ ¼ x,

�̂x ¼ �i@=@x, p̂ ¼ p, and �̂p ¼ �i@=@p),
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�
i
@

@t
þ i

p

m

@

@x
� iU0ðxÞ @

@p
� fðx; pÞ

�
hpxj�ðtÞi ¼ 0;

(11)

which yields the well-known classical Liouville equation
for the probability distribution in phase-space �ðx; p; tÞ ¼
jhpxj�ðtÞij2,

@

@t
�ðx; p; tÞ ¼

�
� p

m

@

@x
þU0ðxÞ @

@p

�
�ðx; p; tÞ: (12)

Thus, we have deduced the classical Liouville equation
along with the Koopman-von Neumann theory from
Eq. (2) by assuming that the classical momentum and
coordinate operators commute.

Inference of quantum dynamics.—The hallmark of quan-
tum kinematics is the canonical commutation relation

½x̂; p̂� ¼ i@; (13)

which implies (i) the Heisenberg uncertainty principle and
(ii) the order of performing measurements of the coordi-
nate and momentum does matter [6]. The evolution of
expectation values of the quantum coordinate and momen-
tum is governed by the Ehrenfest theorems (2).

We repeat the algorithm exercised in classical mechan-
ics above. Substituting the definition of the motion genera-

tor Ĥ obtained from Stone’s theorem (see Sec. I in
Ref. [3]),

i@jd�ðtÞ=dti ¼ Ĥj�ðtÞi; (14)

into Eq. (2), we obtain

im½Ĥ; x̂� ¼ @p̂; i½Ĥ; p̂� ¼ �@U0ðx̂Þ: (15)

Assuming Ĥ ¼ Hðx̂; p̂Þ and utilizing Theorem 1 Ref. [3],
the commutation relations in Eq. (15) reduce to
mH0

pðx; pÞ ¼ p and H0
xðx; pÞ ¼ U0ðxÞ. Whence, the famil-

iar quantum Hamiltonian readily follows as

Ĥ ¼ p̂2=ð2mÞ þUðx̂Þ: (16)

Since the Schrödinger equation was derived from the
Ehrenfest theorems (2), assuming the canonical commuta-
tion relation (13), the presentation suggests that the
Ehrenfest theorems are more fundamental than the
Schrödinger equation.

Unification of quantum and classical mechanics.—(For
a detailed discussion see Sec. III in Ref. [3]; see also
Fig. 2 therein for a graphical summary). The fundamental
difference between nonrelativistic classical and quantum
mechanics is that the momentum and coordinate operators
commute in the former case and do not commute in the

latter [28–30]. The operators x̂, p̂, �̂x, and �̂p obeying

Eq. (8) form the classical operator algebra. The unified

quantum-classical operator algebra is based on x̂q, p̂q, #̂x,

and #̂p satisfying

½x̂q; p̂q� ¼ i@�; ½x̂q; #̂x� ¼ ½p̂q; #̂p� ¼ i; (17)

0 � � � 1, while all the other commutators among x̂q, p̂q,

#̂x, and #̂p vanish. The operators #̂x and #̂p are simply

introduced so that the quantum algebra (i.e., � ¼ 1) is
consistent with the classical algebra. The limit � ! 0
defines the quantum-to-classical transition with the quan-
tum algebra smoothly transforming into the classical one
as � ! 0. Since @ enters in the time derivative of the
Schrödinger equation (14) as well as in the commutator
relationship (13), the limit @ ! 0 encompasses more than
the criterion that the coordinate and momentum operators
must commute in the classical limit. This situation moti-
vated the introduction of the parameter �.
As the first step towards unification of both mechanics,

we apply ODM to

m
d

dt
h�ðtÞjx̂qj�ðtÞi ¼ h�ðtÞjp̂qj�ðtÞi;

d

dt
h�ðtÞjp̂qj�ðtÞi ¼ h�ðtÞj �U0ðx̂qÞj�ðtÞi;

(18)

and obtain the Hamiltonian

Ĥ ¼ 1

�

�
p̂2
q

2m
þUðx̂qÞ

�
þ Fðp̂q � @�#̂x; x̂q þ @�#̂pÞ;

(19)

such that i@jd�ðtÞ=dti ¼ Ĥ j�ðtÞi, where F is an arbi-
trary real-valued smooth function. Note that no Ehrenfest

theorems for the observables Ô ¼ Oðx̂q; p̂qÞ can specify

the function F because ½F̂; Ô� ¼ 0. Hence, the function F
is experimentally undetectable. We shall utilize this free-
dom by finding an F which enforces that the Hamiltonian
(19) smoothly transforms to become the Liouvillian (10) in
the classical limit.
The classical and quantum algebras are isomorphic. The

quantum operators can be constructed as linear combina-
tions of the classical operators in many ways, e.g.,

x̂q ¼ x̂� @��̂p=2; p̂q ¼ p̂þ @��̂x=2;

#̂x ¼ �̂x; #̂p ¼ �̂p:
(20)

In particular, demanding that the quantum operators are
expressed as linear combinations of the classical ones such
that

lim
�!0

x̂q ¼ x̂; lim
�!0

p̂q ¼ p̂; lim
�!0

�̂x ¼ �̂x;

lim
�!0

�̂p ¼ �̂p; lim
�!0

Ĥ ¼ @L̂;
(21)

identifies the function F as (see Theorems 4 and 5 in
Ref. [3])

Fðp; xÞ ¼ �p2=ð2m�Þ �UðxÞ=�þOð1Þ: ð� ! 0Þ
(22)

PRL 109, 190403 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

9 NOVEMBER 2012

190403-3



Keeping the leading term in Eq. (22), we show in Sec. III of
Ref. [3] that only isomorphism (20) is compatible with
such a function F, which leads to the final expression for
the unified quantum-classical Hamiltonian,

Ĥ qc¼ 1

�

�
p̂2
q

2m
þUðx̂qÞ

�
� 1

2m�
ðp̂q�@�#̂xÞ2

� 1

�
Uðx̂qþ@�#̂pÞ

� @

m
p̂�̂xþ 1

�
U

�
x̂�@�

2
�̂p

�
� 1

�
U

�
x̂þ@�

2
�̂p

�
: (23)

that fulfills conditions (21). Theorem 6 in Ref. [3] states

that Ĥ qc � @L̂ for any value of � if and only if U is a

quadratic polynomial.
We now demonstrate that the Wigner phase-space rep-

resentation is a special case of the unified mechanics. First
rewriting the equation of motion

i@jd��ðtÞ=dti ¼ Ĥ qcj��ðtÞi (24)

in the x�p representation (for which x̂ ¼ x, �̂x ¼ �i@=@x,

p̂ ¼ i@=@�p, and �̂p ¼ �p), then introducing new varia-

bles u ¼ x� @��p=2 and v ¼ xþ @��p=2, we transform

Eq. (24) into

�
i@�

@

@t
� ð@�Þ2

2m

�
@2

@v2
� @2

@u2

�
�UðuÞ þUðvÞ

�
�� ¼ 0;

where ��ðu; v; tÞ / hx�pj��ðtÞi. Therefore, �� is the den-

sity matrix for a quantum systemwith the Hamiltonian (16)
after substituting @ ! @�. Note that � enters the equation
of motion (24) as only a multiplicative constant renormal-
izing @. From this perspective, the limit � ! 0 is indeed
equivalent to @ ! 0. The transition from the x�p to xp

representation results in

hpxj��ðtÞi¼
ffiffiffiffiffiffiffi
@�

2�

s Z
d�p��

�
x�@��p

2
;xþ@��p

2
;t

�
eip�p :

(25)

Hence, the wave function hpxj��ðtÞi is proportional to the
celebrated Wigner quasiprobability distribution.

By only demanding a consistent melding of quantum and
classical mechanics within ODM, we achieved the con-
struction equivalent to the Wigner phase-space formulation
of quantum mechanics. The great attraction of the Wigner
formalism is due to its smooth and physically consistent
quantum-to-classical and classical-to-quantum transitions
[29–36]. Our analysis also points to a unique feature of the
phase-space formulation: no quantum mechanical repre-
sentation, but Wigner’s, has a nice classical limit.
Moreover, since the Wigner function’s dynamical equation
is recast in the form of a Schrödinger-like equation (24),
efficient numerical methods for solving the Schrödinger

equation may be applied to propagate the Wigner function
for conceptual appeal and practical utility.
Future prospects.—ODM was introduced to derive

equations of motion from the evolution of average values
and a chosen kinematical description. In Secs. IV–IX of
Ref. [3], ODM is applied to the canonical quantization
rule, the Schwinger quantum action principle, the time
measuring problem in quantum mechanics, quantization
in curvilinear coordinates, as well as classical and quantum
field theories. Additionally, relativistic classical and quan-
tum mechanics is also melded within this framework in
Ref. [37].
Variational principles are at the heart of physics. Within

their framework, the problem of model generation is
reduced to finding the correct form of the action functional,
whose Euler-Lagrange equations govern the model’s dy-
namics. However, the action is usually neither directly
observable nor unique; hence, its construction is a subject
of debate and can only be justified postfactum by supplying
experimentally verifiable equations of motion. More
importantly, there are phenomena beyond the scope of
variational principles (e.g., dissipation). ODM is a theo-
retical framework free of all these conceptual weaknesses
since it operates with observable data recast in the form of
Ehrenfest-like relations. Hence, the equations of motion
are no longer axioms but are corollaries of the more
fundamental Ehrenfest theorems.
D. I. B., R. C., and H.A. R. acknowledge support from

NSF and ARO. Fruitful discussions with Dmitry Zhdanov
are much appreciated.
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