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Interaction potentials used in particle simulations are typically written as a sum of terms which depend

on just a few relative particle positions. Traditional simulation methods move all particles at each time

step, and may thus spend a lot of time updating interparticle forces. In this Letter we introduce adaptively

restrained particle simulations (ARPS) to speed up particle simulations by adaptively switching on and off

positional degrees of freedom, while letting momenta evolve. We illustrate ARPS on several numerical

experiments, including (a) a collision cascade example that demonstrates how ARPS make it possible to

smoothly trade between precision and speed and (b) a polymer-in-solvent study that shows how one may

efficiently determine static equilibrium properties with ARPS.
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Particle simulations are widely used in physics, chem-
istry, biology [1,2], and even computer graphics [3].
However, many important problems still constitute signifi-
cant computational challenges, including molecular dock-
ing, protein folding, diffusion across biomembranes,
fracture in metals, ion implantation, etc. Numerous meth-
ods have been developed to accelerate particle simulations
by, e.g., increasing the simulation’s time step [4–9],
improving the computational complexity of the simulation
[10–14], or simplifying the system under study [14–19], in
particular, via coarse-graining methods [20–22] or multi-
scale and multiresolution methods [23–26].

In this Letter, we introduce a novel, general approach
to speed up particle simulations that we call adaptively
restrained particle simulations (ARPS). Our approach
adaptively switches positional degrees of freedom on and
off during a simulation, while letting the corresponding
momenta evolve. The benefits of this approach are that
(a) it is mathematically grounded and is able to produce
long, stable simulations, (b) it does not requires modifi-
cations to the simulated interaction potential, so that any
suitable existing force field can be directly used with
ARPS, (c) under frequently used assumptions on the
interaction potential, ARPS make it possible to reduce
the number of forces that have to be updated at each
time step, which may significantly speed up simulations,
(d) when performing constant-energy simulations, ARPS
allow users to finely and continuously trade between pre-
cision and computational cost, and rapidly obtain approxi-
mate trajectories, (e) the trade-off between precision and
cost may be chosen for each particle independently, so
that users may arbitrarily focus ARPS on specific regions
of the simulated system (e.g., a polymer in a solvent),
(f) most importantly, when performing adaptively re-
strained molecular dynamics (ARMD) in the canonical
(NVT) ensemble, correct static equilibrium properties can
be computed.

The dynamics of a system of N particles in 3D is
commonly derived from a Hamiltonian function [27]:

Hðq;pÞ ¼ 1

2
pTM�1pþ VðqÞ; (1)

where (q, p) is a vector of 6N phase space coordinates, M
is a 3N � 3N mass matrix (which might depend on q), the
first term of the sum represents the kinetic energy of the
system, and VðqÞ the interaction potential. This potential
(derived from classical or quantum mechanical computa-
tions) is typically represented as a sum of terms that only
depend on a few relative positional degrees of freedom in
the system [28–30].
In our approach, we introduce an adaptively restrained

(AR) Hamiltonian, i.e., a Hamiltonian with a modified
inverse inertia matrix �ðq;pÞ:

HARðq;pÞ ¼ 1

2
pT�ðq;pÞpþ VðqÞ; (2)

and we use the matrix �ðq;pÞ to specify how and when
positional degrees of freedom are switched on and off
during the simulation. In this Letter, we propose such a
matrix for particle simulations in Cartesian coordinates.
How to switch.—We choose to switch positional degrees

of freedom on and off for each particle independently, and,
to do so, we use a diagonal matrix �ðq;pÞ. Each diagonal
3� 3 block of this matrix corresponds to a single particle i,
and is an identity matrix multiplied by the particle’s adap-
tive inverse inertia �iðqi; piÞ. We choose �iðqi; piÞ ¼
m�1

i ½1� �iðqi; piÞ�; 1 � i � N, where mi is the particle’s
mass, and �iðqi; piÞ 2 ½0; 1� is a twice-differentiable re-
straining function. When �iðqi; piÞ ¼ 0 (no restraining),
�iðqi; piÞ ¼ m�1

i and the particle follows full dynamics
[the dynamics derived from the Hamiltonian Eq. (1)].
When �iðqi; piÞ ¼ 1 (full restraining), �iðqi; piÞ ¼ 0 and
the particle is not moving, whatever the force applied to it.
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When �iðqi; piÞ 2 ð0; 1Þ, the particle smoothly switches
between both behaviors.

When to switch.—We make the restraining function of
each particle i depend on its kinetic energyKi ¼ p2

i =ð2miÞ,
so that �iðqi; piÞ ¼ �iðpiÞ. Let "ri and "fi , "ri < "fi , respec-
tively, denote a restrained-dynamics threshold and a full-
dynamics threshold for particle i. We define �iðpiÞ as:

�iðpiÞ ¼

8
>>><

>>>:

1; if 0 � KiðpiÞ � "ri ;

0; ifKiðpiÞ � "fi ;

sðKiðpiÞÞ 2 ½0; 1�; elsewhere;

where sðKiÞ is a twice-differentiable function with respect
to its argument and, therefore, to pi.

The equations of motion can now be derived from the
AR Hamiltonian:

_p ¼ �@HAR

@q
¼ �@VðqÞ

@q
;

_q ¼ @HAR

@p
¼ M�1½I� �ðpÞ�p� 1

2
pTM�1 @�ðpÞ

@p
p;

(3)

where I is an identity matrix, �ðpÞ is a 3N � 3N diagonal
matrix combining the individual �iðpiÞ. As with
Hamiltonian [Eq. (1)], the time derivative of the momenta
vector is equal to the negative gradient of the potential.
Positions, however, evolve differently. When a particle’s
momentum becomes small enough (without necessarily
becoming zero), the particle completely stops moving.
Even when a particle is fully-restrained, though, its mo-
mentum may continue to change, and its kinetic energy
might become large enough again for the particle to resume
moving. In general, ARPS restrain and release particles
repeatedly over time.

Consider for example a 1D harmonic oscillator, i.e., a
single particle of mass 1 g=mol attached with a spring of

stiffness 1 kcal=ðmol �A2Þ to the origin. Figure 1 shows a
phase space portrait of the corresponding AR system.
Gray lines stand for isolines of the AR Hamiltonian, the
thick black line—for a specific isoline of this Hamiltonian
(HAR � 1), the dotted red circle represents the correspond-
ing isovalue of the classical Hamiltonian (H � 1). The
restrained-dynamics region (where the particle is fully-
restrained) is blue, the full-dynamics region (where the
particle is not restrained) is green, and black dashed lines
indicate the boundaries of these two regions. The AR
Hamiltonian has modified trajectories: in the restrained-
dynamics region positions are constant, but momenta
change; in the transition region trajectories smoothly switch
between restrained dynamics and full dynamics. When
p ¼ 0, the AR trajectory is tangential to the classical one.

In this Letter, we validate our method by conside-
ring molecular dynamics in two widely used thermody-
namical ensembles. Hamiltonian dynamics samples the

microcanonical ensemble (NVE). However, statistical
averages are often computed in the canonical (NVT)
ensemble. In this ensemble, ARPS can determine any
static equilibrium property hAiH by considering the AR
Hamiltonian as a biased version of the original one:HAR ¼
Hþ VARðq;pÞ. Phase space samples generated according
to the AR distribution are then weighted [31]:

hAiH ¼ hAeðVAR=kBTÞiHAR
=heðVAR=kBTÞiHAR

:

When A only depends on positions, and the AR
Hamiltonian is separable (as in this Letter), the correct
statistics are even obtained straight away: hAiHAR

¼ hAiH.
Computational performance.—AR simulations may re-

sult in significant speed-ups when the particle forces can
be incrementally updated at each time step based on the list
of particles that have moved. Such incremental update
algorithms have been developed before [30,32]. In this
Letter, we propose a simple method to efficiently update
forces under two frequent assumptions: (a) the interaction
potential is a sum of pairwise terms (thus, there is no need
to update forces between two fully-restrained particles)
and (b) a cutoff distance is used. The method relies on a
3D grid of cells, to which all particles are distributed
according to their positions [27]. Thanks to the grid, all
particles that interact with a specific particle in cell c can
be found in a limited number of cells around cell c. Every
time step, for the whole set of active (non fully-restrained)
particles, we incrementally update applied forces: (1) all

FIG. 1 (color online). Phase portrait of the adaptively re-

strained harmonic oscillator ("r1 ¼ 0:5, "f1 ¼ 0:8 kcal=mol). In
the full-dynamics region, trajectories remain unperturbed. In the
restrained-dynamics region, positions are constant although
momenta evolve.
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forces that were acting on each active particle at the
previous time step (based on previous positions) are sub-
tracted, (2) the grid is updated, since some active particles
may have moved to other cells, (3) new forces, based on
current positions, are added to each active particle. This
method has a linear time complexity in the number of
active particles.

Implementation and results.—We designed four numeri-
cal tests to validate our approach and demonstrate the
benefits of ARPS in the context of molecular dynamics.
For NVE simulations, we used a partitioned Euler method
[33] to integrate the equations of motion [Eq. (3)]. Since,
in this Letter, the AR Hamiltonian is separable, this inte-
grator is symplectic and explicit. For NVT simulations,
we used a Langevin thermostat in the general form [31],
and the following integration splitting scheme: a half step
for the Langevin part of the equations, a full step for the
Hamiltonian part, and again, a half step for the Langevin
part [34]. This integrator is implicit. To solve the nonlinear
equation for momenta, we used the fixed-point method: in
practice, about three iterations were sufficient for this
method to converge.

The ARPS method was implemented in C++ and tested
either on Computer 1 (two Intel Xeon X5450 3 GHz quad-
core processors, 16 GB of RAM, Windows Vista 64-bit
operating system) or on Computer 2 (one Intel 2.40 GHz
quad-core processor, 4 GB of RAM, Windows Vista 32-bit
OS). The implementation was serial: each simulation only
used one processing core at a time.

Argon liquid.—To show that ARPS is able to produce
long stable trajectories, we simulated a periodic 3D box of
21952 Argon particles (box length 99.3048 Å, particle mass
39:95 g=mol) in the NVE ensemble. A Lennard-Jones po-

tential [35] was used (�=kB ¼ 120 K,� ¼ 3:4 �A, cutoff ¼
8 �A, the potential was truncated through a smoothing func-
tion applied between 7.5 and 8 Å, the same parameters used
for all presented tests). We performed three simulations: a
reference (full-dynamics) simulation, and two AR simula-
tions with different thresholds (time step size 0.488 fs,
5000000 time steps, total simulation time 2.44 nano-
seconds, Computer 1). Figure 2 shows the system’s total
adaptive energy for both AR simulations, i.e., the value of
HAR over time. Thanks to the readily available symplectic
integrator, these adaptive energies are stable. Note how
the total adaptive energies do not coincide with each
other, nor with the total energy of the reference simulation
(� 23 459 kcal=mol, not plotted): even though the same
initial conditions were used for both positions and mo-
menta, different Hamiltonians were simulated and pre-
served. For both AR simulations, Fig. 2 reports (a) the
average number of active particles hNacti as a percentage
of the total number, (b) the average number of updated
forces hNFi relatively to the reference simulation (which
required about 537 000 force updates on average, per time
step), and (c) the total speed-upwith respect to the reference

simulation (which took about 10 CPU days), due to the
reduction in hNFi.
Collision cascade.—To demonstrate how AR particle

simulations allow us to smoothly trade between computa-
tional cost and precision, we simulated a collision cascade
in a 2D system composed of 5930 particles with mass
1 g=mol in the NVE ensemble, using again a Lennard-
Jones potential. We performed four simulations of a shock
induced by a particle launched at high velocity towards
an initially static 2D system: a reference (full-dynamics)
simulation, and three AR simulations with varying degrees
of precision (time step size 0.0488 fs, 7000 steps, total
simulation time 342 fs, Computer 2). Figure 3 compares
the final configurations reached by the simulations. For
each AR simulation, the root-mean-square deviation
(RMSD) from the reference final configuration is given,
as well as the maximum particle displacement error�qmax.
In this example, AR simulations allow for large speed-ups
(up to 10 times) while preserving the features of the shock
extremely well.
Radial distribution function.—To show that ARPS may

be used to compute static equilibrium properties in the
NVT ensemble, we performed Langevin simulations
of a system of 343 Argon particles interacting in a 3D
periodic box through a Lennard-Jones potential (box
length 25.56 Å, Langevin friction coefficient � ¼ 1,
T ¼ 94:4 K). The particles were initially far from equilib-
rium, positioned at the nodes of a 3D cubical lattice. We
launched a full-dynamics simulation and an AR simulation
and computed the radial distribution function gðrÞ in each
case (time step size 0.488 fs, 150 000 steps, total simulation
length 73.2 ps, Computer 2). Figure 4 plots the results: even
though the AR simulation has significantly modified the
system’s dynamics (only 3% of the particles are moving on
average at each time step), the curves coincide, demon-
strating that the equilibrium statistics have been preserved.
Polymer in solvent.—Finally, to show how ARPS may

be used to obtain static properties faster than with full-
dynamics simulations, we performed Langevin simulations

0 0.5 1.0 1.5 2.0

FIG. 2. Adaptively restrained simulations of a periodic 3D box
of 21 952 Argon particles, with two different pairs of thresholds
(NVE ensemble). The total adaptive energies are stable for both
simulations, even when the average number of active particles
hNacti is greatly reduced. The decrease in the average number of
updated forces hNFi results in significant speed-ups.
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of a toy polymer in a small solvent box (343 Argon
particles, box length 25.56 Å) in order to predict its
hydrodynamic radius (� ¼ 1, T ¼ 350 K). This numerical
experiment is representative of numerous applications of
particle simulations in physics, chemistry, biology, etc.,
where information is collected about a small part of the
particle system, but where the rest of the system is required
so that the collected information is realistic (e.g., simulat-
ing an active site in an enzyme, a solute passing through a
membrane channel, a defect in a graphene sheet, a crack in
a material, etc.). We modeled the polymer as five particles
of mass 40 g=mol each, connected by springs (stiffness

k ¼ 30 000 �=�2, equilibrium length d0 ¼ 0:07071�
� ¼ 2:4 �A). Here � is the parameter of the Lennard-
Jones potential described above in the Argon liquid ex-
ample. The solvent interacted with the polymer through a
Lennard-Jones potential (same set of parameters).

Since we wanted to obtain statistics on the polymer, we
only restrained the solvent particles ("r ¼ 18 kcal=mol,
"f ¼ 20 kcal=mol). We compared the rate of convergence
of the polymer’s hydrodynamic radius RH to its average
value hRHi in full-dynamics simulations and AR simula-
tions. To achieve this, despite the intrinsic stochasticity
of Langevin simulations, we performed 90 day-long
full-dynamics simulations and 90 day-long AR simulations

(time step size 0.488 fs, a total of 6 CPUmonths, Computer
1). The values of hRHi averaged over 90 simulations are
very close (4.459, and 4.462 Å, respectively).
Figure 5 plots the variance of RH in full-dynamics

simulations and AR simulations, first as a function of
simulation time (top) and then as a function of wall-clock
time (bottom). In simulation time (i.e., per time step),
the full-dynamics variance decreased faster than the AR
variance. This is understandable: solvent particles, which
influence the polymer conformations, were often static in
the AR simulations (2% of active particles on average), so
that phase space was less efficiently sampled at each time
step. The computational cost of AR time steps, however,

FIG. 3 (color online). Simulating a collision cascade with controlled precision (thresholds in kcal=mol, NVE ensemble). AR
simulations allow us to smoothly trade between precision and speed. Even for large speed-ups (up to 10 times), the features of the
picture are extremely well preserved.
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FIG. 4 (color online). Radial distribution functions for an
Argon system (periodic 3D box, 343 particles, NVT ensemble).
Even though the AR simulation has significantly modified the
system’s dynamics (see hNacti), the curves coincide.

FIG. 5 (color online). Computing the hydrodynamic radius of
a solvated polymer (NVT ensemble). Full-dynamics simulations
reduce the variance more at each time step (top), but AR
simulations perform many more time steps, so that they reduce
the variance faster in wall-clock time (bottom). For any target
precision, AR simulations compute the hydrodynamic radius
four times faster than full-dynamics simulations.
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was significantly reduced: AR simulations allowed for
about seven times more time steps in the same wall-clock
duration (3 645 000 vs 495 000). As a result, the AR
variance decreased faster than the full-dynamics variance
per wall-clock second. To estimate the speed-up, we fitted

the curves with functions of the form: a=
ffiffiffiffiffiffiffiffiffiffiffiffi
xþ b

p
. We

obtained a ¼ 0:0029 (b ¼ �0:484) for the reference
simulations and a ¼ 0:0015 (b ¼ �0:065) for the AR
simulations, indicating that AR simulations reached a
given precision about four times faster. More details on
the performed numerical experiments can be found in
Supplemental Material [31].

In conclusion, we proposed a novel approach to particle
simulations which relies on a new, adaptively restrained
Hamiltonian that switches positional degrees of freedom
on and off during simulations, while letting momenta
evolve. We have shown how adaptively restrained simula-
tions allow us to smoothly trade between precision and
speed, or compute static equilibrium properties faster.

We believe our approach may be extended in numerous
directions, since the inverse mass matrix �ðq;pÞ can be
chosen according to the specific needs of different types
of simulations. Moreover, with any such matrix, ARPS can
be combined with numerous existing methods, such as fast
algorithms to compute long-range interactions [11,36]
(although incremental versions may have to be designed),
as well as techniques aimed at accelerating sampling
[10,37,38]. We also want to explore several theoretical
aspects of ARPS: the choice of thresholds, their influence
on the system’s dynamical properties, connections to
Monte Carlo methods, etc.
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