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We study the critical properties of the Kitaev-Heisenberg model on the honeycomb lattice at finite

temperatures that might describe the physics of the quasi-two-dimensional compounds, Na2IrO3 and

Li2IrO3. The model undergoes two phase transitions as a function of temperature. At low temperature,

thermal fluctuations induce magnetic long-range order by the order-by-disorder mechanism. This

magnetically ordered state with a spontaneously broken Z6 symmetry persists up to a certain critical

temperature. We find that there is an intermediate phase between the low-temperature, ordered phase and

the high-temperature, disordered phase. Finite-sized scaling analysis suggests that the intermediate phase

is a critical Kosterlitz-Thouless phase with continuously variable exponents. We argue that the inter-

mediate phase has been observed above the low-temperature, magnetically ordered phase in Na2IrO3, and

also, likely exists in Li2IrO3.
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Introduction.—The Ir-based transition metal oxides, in
which the orbital degeneracy is accompanied by a strong
relativistic spin-orbit coupling (SOC), have recently at-
tracted a lot of theoretical and experimental attention
[1–8]. This is because the strong SOC creates a different,
and frequently novel, set of magnetic and orbital states
due to the unusual anisotropic exchange interactions
between localized moments which are in turn determined
by the combination of spin and lattice symmetries. The
spin-orbital models that describe the low-energy physics
of iridium systems often include anisotropic terms that
do not reduce to the conventional easy-plane and easy-
axis anisotropies because they involve the products of
different components of multiple spin operators [9].
These terms are responsible for exotic Mott-insulating
states [3], topological insulators [10,11], spin-orbital
liquid states [1,2], and nontrivial long-range magnetic
orders [3,4,6].

A prominent example of such an anisotropic spin-orbital
model is the Kitaev-Heisenberg (KH) model on the honey-
comb lattice [12,13] which likely describes the low-energy
physics of the quasi-two-dimensional (2D) compounds,
Na2IrO3 and Li2IrO3. In these compounds, Ir4þ ions are
in a low spin 5d5 configuration and form weakly coupled
hexagonal layers [4,6,8]. Due to strong SOC, the atomic
ground state is a doublet where the spin and orbital angular
momenta of Ir4þ ions are coupled into Jeff ¼ 1=2. It was
suggested [12,13] that the interactions between these ef-
fective moments can be described by a spin Hamiltonian
containing two competing nearest neighbor (NN) interac-
tions: an isotropic antiferromagnetic (AF) Heisenberg ex-
change interaction and a highly anisotropic ferromagnetic
(FM) Kitaev exchange interaction [14]. This competition
can be described with the parameter, 0 � � � 1, which
sets the relative strength of these two interactions. At
� ¼ 0, the coupling corresponds to the AF Heisenberg

interaction, and at � ¼ 1, it corresponds to the Kitaev
interaction.
This model immediately attracted a lot of attention;

several theoretical studies were published in the last few
years [13,15–17] on both the ground state and its properties
at a finite temperature. The ground state phase diagram of
the KH model exhibits three distinct phases: the AF Néel
phase for small � 2 ð0:; 0:4Þ, the stripy AF phase for
intermediate � 2 ð0:4; 0:86Þ, and the disordered spin-
liquid phase at large � 2 ð0:86; 1:Þ. While the phase tran-
sition between the Néel and the stripy phase appears to be
discontinuous, numerical studies including density matrix
renormalization group [15] and exact diagonalization re-
sults [13] suggest that the transition between the spin liquid
and the stripy state is continuous or weakly first-order.
Additionally, quantum fluctuations select all of the mag-
netically ordered phases to have the order parameter point
along one of the cubic axes.
In this Letter, we discuss finite temperature properties of

the KH model on the honeycomb lattice. A first step in this
direction was made in Ref. [16], where the critical ordering
scale for the magnetically ordered states was analyzed
using a pseudofermion functional renormalization group
approach. Here, we present numerical results obtained
using Monte Carlo (MC) simulations. We study the
classical KH model because the corresponding quantum
model has a sign problem precluding quantumMC analysis
and also, because the existence of long-range order at
low temperatures in Na2IrO3 and in Li2IrO3 indicates
that quantum fluctuations are not dominating in these
materials [4–8].
We show that the thermal fluctuations of classical spins

give rise to two distinct temperature dependent effects. At
low temperature, they predominantly act as the source of
the order-by-disorder phenomenon and select collinear
magnetic order where the spins are oriented along one of
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the cubic directions. There are six possible ordered states,
one of which is spontaneously chosen by the system. At
high temperatures, when T is larger than any energy scale
in the system, the fluctuations destroy any order putting the
KH model into a three dimensional paramagnetic state.
The main goal of our study is to see how these two phases
are connected.

We argue that the classical KH model effectively be-
haves like a six-state clock model [18–21] and that it
undergoes two continuous phase transitions as a function
of temperature separating three phases: a low-T ordered
phase, an intermediate critical phase, and a high-T disor-
dered phase. The critical phase has an emergent, continu-
ous Uð1Þ symmetry which is fully analogous to the low-T
phase of the XY model, a well-known KosterlitzThouless
(KT) transition phase of critical points with floating ex-
ponents and algebraic correlations. Here, we present nu-
merical data only for � ¼ 0:25 and � ¼ 0:75 since these
values likely characterize the ratio between the AF
Heisenberg interaction and the Kitaev interaction in
Na2IrO3 and Li2IrO3. However, we note that recent inelas-
tic neutron scattering measurements on Na2IrO3 have
shown that the KH model alone is insufficient to describe
the magnetic properties of this compound [7]. It has been
demonstrated that it is essential to include substantial
further-neighbor exchanges to describe both the zigzag
ground state and the excitation spectrum in Na2IrO3. The
full finite-temperature phase diagram for the KH model
with second and third neighbor exchange interactions will
be published elsewhere [22].

The Model.—The classical version of the KH model
which describes the interactions among the J ¼ 1=2 de-
grees of freedom of Ir4þ ions reads as

H ¼ �JK
X

hiji�
S�i S

�
j þ JH

X

hiji
SiSj; (1)

where the spin quantization axes are taken along the cubic
axes of the IrO6 octahedra. � ¼ x, y, z denotes the three
bonds of the honeycomb lattice. The exchange constants,
JK ¼ 2� and JH ¼ 1� �, correspond to the Kitaev and
Heisenberg interactions which can be derived from a multi-
orbital Hubbard Hamiltonian [13].

Order by Disorder.—The symmetry of the KH model
combines the cubic symmetry of both the spin and the
lattice space. It consists of simultaneous permutations
between the x, y, z spin components and a C3-rotation of
the lattice which defines a discrete symmetry. The classical
ground state has a higher symmetry than that of the
Hamiltonian—the ground state energy does not change
under a simultaneous rotation of all spins. Since this ap-
plies only to the ground state, the KH model has only an
accidental continuous rotation symmetry. Its actual sym-
metry is discrete; at zero temperature, the pseudo SU(2)
symmetry is broken by quantum fluctuations that restore
the underlying cubic symmetry of the model [13]. The

magnetically ordered phase is gapped with a spin gap
that corresponds to the finite energy cost of deviating the
order parameter from one of the cubic axes. We show in the
following that thermal fluctuations of classical spins at
finite T also select a collinear spin configuration whose
order parameter points along one of the cubic axes.
Parameters of the Simulations.—We have carried out

classical MC simulations of the model [Eq. (1)] using the
standard Metropolis algorithm. In our MC simulations, we
treat the spins as three-dimensional (3D) vectors, Si ¼
ðSxi ; Syi ; Szi Þ, of unit magnitude with ðSxi Þ2 þ ðSyi Þ2 þ
ðSzi Þ2 ¼ 1 at every site. At each temperature, more than
107 MC sweeps were performed. Of these, 5� 105 were
used to equilibrate the system, and afterwards, only one out
of every five sweeps was used to calculate the averages of
physical quantities. We present all energies in the units of
JH and assume kB ¼ 1. The calculations were carried out
on several finite systems with size 2L2 that are spanned by

the primitive vectors of a triangular lattice a1 ¼
ð1=2; ffiffiffi

3
p

=2Þ and a2 ¼ ð1; 0Þ with a two-point basis using
periodic boundary conditions.
Results.—To study the possible phases of the model

[Eq. (1)], we introduce four magnetic configurations
(Fig. 1): a FM order, a simple two-sublattice AF Néel
order, a stripy order, and a zigzag spin order. The classical

energies of these states can be easily computed: EM
cl ¼

3� 5�, EZ
cl ¼ �3�þ 1, ES

cl ¼ ��� 1, and EN
cl ¼

5�� 3 for the FM, the zigzag, the stripy, and the Néel
phases, respectively. For 0 � �< 1, the classical ground
state is either the Néel AF with the vector order parameter
N ¼ 1

N

P
iðSiA � SiBÞ or the stripy phase described

by S ¼ 1
N

P
i¼nðSiA � SiB þ SiC � SiDÞ. Here, A, B and

A, B, C, D denote either two or four sublattices that,
respectively, characterize the Néel AF and stripy order.
The classical phase transition between them occurs at
� ¼ 1=3. At � ¼ 1, the FM, stripy, and zigzag phases all

(c)

(a) (b)

(d)

FIG. 1. Four possible magnetic configurations: (a) the FM
ordering; (b) the two-sublattice, AF Néel order; (c) the stripy
order; (d) the zigzag order. Open and filled circles correspond to
up and down directions of spins.
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have the same classical energy. However, the classical
degeneracy of this point, which corresponds to the pure
Kitaev model, is much higher. This limit has been thor-
oughly studied by Baskaran et al. [23].

To make an analogy to the six-state clock model, we map
the order parameter describing the magnetically ordered
phase of the KH model onto a 2D complex order parameter,
mNðSÞ ¼

P
6
i¼1 jmi;NðSÞje{�i , such that the six possible or-

dered states are characterized by �i ¼ �ni=3, ni ¼
0; . . . ; 5 [20]. The mapping is exact only well within the
ordered state since there is no guarantee that the thermal
fluctuations of the order parameter will actually have a 2D
character given that the spin degrees of freedom are three-
dimensional. Depending on the strength of the spin stiffness
in different directions, the long-range low-T magnetic order
can be destroyed in one of several ways. If the stiffness of
thermal fluctuations along the circle is softer than the stiff-
ness of fluctuations in the direction transverse to the circle,
the long-range order may be destroyed by a discontinuous
first-order transition, by two continuous phase transitions
with an intermediate partially ordered phase, or by two
KT phase transitions with an intermediate critical phase
[18–21]. In the last scenario, the critical phase is destroyed
by topological excitations in the form of discrete vortices
whose existence is directly related to the emergence of a
continuous symmetry; the high-T transition will first bring
the system into a disordered phase where fluctuations are
primarily 2D, and the crossover to the 3D paramagnet
occurs at even higher temperatures.

In Fig. 2, we present the results of the histogram method
for the complex order parameter. At low temperatures,
Figs. 2(a) and 2(e), a sixfold degeneracy present in the
ordered phase is seen. For both � ¼ 0:25 and � ¼ 0:75,
the six states which have the highest weight in the histo-
gram are where the order parametermNðSÞ points along one
of the cubic axes. In Figs. 2(b) and 2(f), when the

temperature increases beyond a certain critical tempera-
ture, a continuous Uð1Þ symmetry emerges signaling both
the disappearance of the sixfold anisotropy and the appear-
ance of the critical phase. The formation of vortices can be
seen in Fig. 3, where we present a snapshot of the coarse-
grained order parameter hmNi at T ¼ 0:168. Upon a further
increase in temperature, the amplitude of the order parame-
ter decreases [Figs. 2(c) and 2(g)] until it shrinks to
zero indicating the transition to the paramagnetic phase
[Figs. 2(d) and 2(h)].
To better understand the properties of the intermediate

phase and to confirm its critical nature, we performed the
finite-size scaling analysis appropriate for KT transitions
[24]. The full finite-size scaling analysis is rather involved
and will be reported elsewhere [22]. Here, we present only
the scaling behavior of the order parameter. At the KT
transition, the order parameter exhibits the power law

dependence on system size, m� L��=2. As each point of
the intermediate critical phase can be understood as a
critical point, the power law behavior of the order parame-
ter should hold throughout the entire phase. We found that
the boundaries of the critical phase are characterized by
critical exponents close to 1=9 and 1=4 for the lower and
upper boundaries at Tc1 and Tc2 , which is in agreement

with critical exponents for the six-state clock model ob-
tained by the renormalization group analysis [18]. Figure 4
shows the log-log plots of the order parameter mNðSÞ as
a function of system size for different temperatures. For
� ¼ 0:25, the data in Fig. 4(a) show a linear behavior in the
temperature interval between Tc1 ’ 0:152 and Tc2 ’ 0:162,

in which there are several critical lines characterized by �
between 1=9 and 1=4. For � ¼ 0:75, we have detected the
critical phase in the temperature interval between Tc1 ’
0:125 and Tc2 ’ 0:127.

The lower transition temperature Tc1 can be indepen-

dently determined using fourth-order Binder cumulant
[Figs. 5(a) and 5(b)]. The Binder cumulant has a scaling
dimension of zero; thus, the crossing point of the cumulants

-0.5 0 0.5

-0.5

0

0.5
T = 0.12

(a)

-0.5 0 0.5

T = 0.158(b)

-0.5 0 0.5

T = 0.186(c)

-0.5 0 0.5

T = 0.22(d)

-0.5 0 0.5

-0.5

0

0.5
T = 0.12(e)

-0.5 0 0.5

T = 0.126(f)

-0.5 0 0.5

T = 0.132(g)

-0.5 0 0.5

T = 0.16(h)

FIG. 2 (color online). Histograms of the order parameter
mNðSÞ, obtained for the system with 2� 84� 84 spins in the

ordered phase, (a) and (e), in the intermediate phase, (b)–(c) and
(f)–(g), and in the disordered phase, (d) and (h). Histograms
(a)–(d) are computed for � ¼ 0:25, and (e)–(h) are for � ¼ 0:75.
The histograms are presented on the complex plane (Re jmNðSÞj,
Im jmNðSÞj).
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FIG. 3. A snapshot of the coarse-grained order parameter hmNi
at T ¼ 0:168. The vortexlike topological excitations are evident.
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for different lattice sizes provides a reliable estimate for the
value of the critical temperature Tc1 at which the long-

range order is destroyed. The crossing points for � ¼ 0:25
and � ¼ 0:75 are Tc1 ¼ 0:152 and Tc1 ¼ 0:124, respec-

tively. They are in good agreement with estimates obtained
from the log-log plots in Fig. 4.

In Figs. 6(a) and 6(b), we present the temperature de-
pendence of the specific heat, C ¼ ðhE2i � hEi2Þ=NT2.

While the low-T transition, seen as small peak at tempera-
tures Tc1 ¼ 0:152 and 0.1247 for � ¼ 0:25 and 0.75,

respectively, is in a good agreement with our previous
estimates, the features corresponding to the high-T
transition Tc2 are barely distinguished by eye. This is not

surprising as the high-T transition is a usual KT transition
at which the specific heat does not diverge at the critical
point [25]. It is also likely that the high-T KT transition
might be shadowed by the crossover to the 3D paramagnet,
which is seen in Fig. 6 as a very broad hump at higher-T.
Our findings for the specific heat show a lot of similar-

ities between the experimental data obtained on the
Na2IrO3 and Li2IrO3 compounds by Refs. [4,5,8]. In
Na2IrO3, both the lambdalike anomaly at the Néel ordering
temperature, TN ¼ 15 K, and a broad tail which extends
into higher temperatures are seen in the specific heat
measurements [4]. The latter suggests the presence of
short-range order above the bulk 3D ordering that can be
understood by our proposed scenario of the critical phase.
Let us estimate the temperatures of the KT transitions

and the width of the critical phase in Na2IrO3 based on our
results obtained for the KH model with � ¼ 0:25. On the
mean field level, the exchange on the NN bonds may be
estimated from the classical energy, J1 ’ ð3� 5�Þ=3, in
the Néel phase. From the recent neutron scattering experi-
ment [7], the NN exchange in Na2IrO3 was estimated to be
J1 ¼ 4:17 meV. In the bulk of our Letter, all energies were

L
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FIG. 4 (color online). The log-log plots of the order parameter
mNðSÞ as a function of system size L at various temperatures,

which increase from the top to the bottom curves. The solid
curves indicate the linear behavior that corresponds to a power
law dependence,mNðSÞ � L��=2, corresponding to the intermedi-

ate critical phase. The dashed curves show deviation away from
the linear behavior outside the critical phase.
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FIG. 5 (color online). The Binder cumulant as a function of
temperature for (a) � ¼ 0:25 and (b) � ¼ 0:75. From the cross-
ing points of different Binder’s curves, we estimate Tc1 ¼ 0:152

and Tc1 ¼ 0:124 for � ¼ 0:25 and � ¼ 0:75, respectively. The

curve corresponding to the largest system size (L ¼ 204) is the
lowest at temperatures above the crossing point and the highest
at temperatures below it.
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FIG. 6 (color online). Specific heat C as a function of tem-
perature for (a) � ¼ 0:25 and (b) � ¼ 0:75. The black line
corresponds to the smallest system size (L ¼ 36), while the light
grey line corresponds to the largest systems size (L ¼ 204).
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measured in the units of JH, and thus, we estimate J1 to be
equal to 12.7 meV. This gives the prediction for the critical
temperature to be Tc1 ¼ 16:8 K, which is very close to the

experimental value TN ¼ 15 K [4,5]. Our estimate for the
upper boundary of the critical phase is Tc2 ¼ 17:7 Kwhich

makes the predicted critical phase very narrow. We note
here that the critical phase survives in the extended KH
model with included further-neighbor exchange couplings
[5,7,26] which are essential for comparison with experi-
ment. However, in order to determine the upper boundary
of the critical phase, additional extensive numerical simu-
lations must be performed.

The authors are particularly thankful to C. Batista, G.-W.
Chern, G. Jackeli, and Y. Kato for stimulating discussions
and many helpful suggestions. We are grateful to H. Takagi
and T. Takayama for sharing with us unpublished data on
Na2IrO3 and Li2IrO3. N. P. acknowledges the support from
NSF Grant No. DMR-1005932. N. P. also thanks the hos-
pitality of the visitors program at MPIPKS, where the part
of the work has been done.

[1] S. Nakatsuji, Y. Machida, Y. Maeno, T. Tayama, T.
Sakakibara, J. Duijn, L. Balicas, J. Millican, R.
Macaluso, and J. Chan, Phys. Rev. Lett. 96, 087204 (2006).

[2] Y. Okamoto, M. Nohara, H. Aruga-Katori, and H. Takagi,
Phys. Rev. Lett. 99, 137207 (2007).

[3] B. J. Kim, H. Ohsumi, T. Komesu, S. Sakai, T. Morita,
H. Takagi, and T. Arima, Science 323, 1329 (2009).

[4] Y. Singh and P. Gegenwart, Phys. Rev. B 82, 064412
(2010).

[5] Y. Singh, S. Manni, J. Reuther, T. Berlijn, R. Thomale,
W. Ku, S. Trebst, and P. Gegenwart, Phys. Rev. Lett. 108,
127203 (2012).

[6] X. Liu, T. Berlijn, W.-G. Yin, W. Ku, A. Tsvelik, Y.-J.
Kim, H. Gretarsson, Y. Singh, P. Gegenwart, and J. Hill,
Phys. Rev. B 83, 220403(R) (2011).

[7] S. K. Choi et al., Phys. Rev. Lett. 108, 127204 (2012).
[8] H. Takagi (unpublished).
[9] G.-W. Chern and N. B. Perkins, Phys. Rev. B 80, 180409

(R) (2009).
[10] A. Shitade, H. Katsura, J. Kuneš, X.-L. Qi, S.-C. Zhang,
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