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Based on a phenomenological model and the Kubo formula, we investigate the superfluid density �sðTÞ
and then the penetration depth �ðTÞ of the iron-based superconductors in the coexistence region of the

spin-density wave and superconductivity, and also in the overdoped region. Our calculations show a

dramatic increase of �ð0Þ with the decrease of the doping concentration x below x ¼ 0:1. This result is

consistent with the experimental observations. At low temperatures, �sðTÞ shows an exponential-law

behavior, while at higher temperatures, the linear-in-T behavior is dominant before it trends to vanish. It is

in qualitative agreement with the direct measurement of superfluid density in films of Fe-pnictide

superconductor at x ¼ 0:08. The evolution of ��ðTÞ can be roughly fitted by a power-law function

with the exponent depending on the doping concentration. We show that the Uemura relation holds for the

iron-based superconductors only at very low doping levels.
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In addition to zero resistance, the Meissner effect is
another hallmark of superconductivity. The directly mea-
sured penetration depth (�) in a weak magnetic field pro-
vides information of the gap structure, and is a characteristic
length scale of a bulk superconductor. In general, �s /
1=�2. The number of electrons in the superconducting
phase, �s, characterizes the phase rigidity of a superconduc-
tor. In conventional Bardeen-Cooper-Schrieffer supercon-
ductors, the penetration depth exhibits an exponential
behavior at low temperatures, and the power-law behavior
in ��ðTÞ � �ðTÞ � �ð0Þ has been considered as evidence
for unconventional pairing symmetry in the high-
temperature superconductors [1]. Compare to cuprates, the
remarkable features of iron pnictides are the nature of
magnetism and the multiband character. They have triggered
massive studies since their discovery [2,3]. In this Letter we
focus on its response to a weak external magnetic field.

There are several ways to measure magnetic penetration
depth [4–6]. In the 1111 systems, at low temperatures,
some experiments [7] found a power-law behavior �ðTÞ,
while others [8,9] have found an exponential temperature
dependence of �ðTÞ. The situation in the 122 system is also
unclear: The superfluid density �sðTÞ exhibits an exponen-
tial behavior in the cleanest Ba1�xKxFe2As2 [10], while
measurements on BaðFe1�xCoxÞ2As2 have shown a power-
law behavior of �ðTÞ [11–16] with the exponent varying
from 1.6 to 2.8, and a two-gap scenario is suggested for
BaðFe1�xCoxÞ2As2 and Ba1�xRbxFe2As2 [17,18]. And
there are also some theoretical works [19–22].

In this Letter, we carry out systematic calculations
of �sðTÞ based on a two-orbital phenomenological model
[23]. Within this model, each unit cell accommodates two
inequivalent Fe ions and results based on this model

on various properties of Fe-pnictide superconductors
[23–31] are in reasonable agreement with experimental
measurements. When we normalize the energy parameters
of the Fe-Fe nearest and next-nearest neighbors, the hop-
ping integrals defined below are chosen as t1�4 ¼ 1, 0.4,
�2:0, 0.04 [23], respectively. In the momentum k space, the
single-particleHamiltonianmatrix can bewritten as [26,27]

Ht;k ¼

a1 �� a3 a4 0

a3 a1 �� 0 a4

a4 0 a2 �� a3

0 a4 a3 a2 ��

0
BBBBB@

1
CCCCCA; (1)

with a1 ¼ �2t2 cosðkx þ kyÞ � 2t3 cosðkx � kyÞ, a2¼
�2t3 cosðkx�kyÞ�2t2 cosðkxþkyÞ, a3 ¼ �2t4ð cosðkx þ
kyÞ þ cosðkx � kyÞÞ, a4 ¼ �2t1ðcoskx þ coskyÞ, where �

is the chemical potential. Here we have chosen the x axis
along the link connecting nearest neighbor Fe ions, and the
distance between nearest neighbor Fe is taken as the unit of

length. The pairing termH�;k ¼ P
��kð��;kc

y
��k"c

y
���k# þ

H:c:Þ has only next-nearest-neighbor intra-orbital pairing,
where � denotes Fe A or Fe B in the unit cell and � denotes
the orbitals. It will lead to the s�-wave pairing symmetry
[10,11,32]. The self-consistent conditions are ��k ¼
2
P

� cosk��
�
i;iþ� and ��

i;iþ�¼ V
2 hc�i�"c�iþ�;�# �c�i�#c

�
iþ�;�"i¼

V
Ns

P
kcosk�hc��;k"c��;�k#i, with � ¼ x� y and the pairing

strength V ¼ 1:2. The interaction term includes the Hund’s
coupling JH ¼ 1:3 and the on-site Coulomb interaction U,
in which we choose U ¼ 3:4 and U ¼ 4:0 as two different
kinds of homogenous systems. After taking the mean-field
treatment [24,25], Hint can be expressed as
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Hint ¼ U
X

i��� ��

hni� ��ini�� þ ðU� 3JHÞ
X

i����

hni��ini��

þ ðU� 2JHÞ
X

i����� ��

hni� ��ini��: (2)

In the presence of spin-density-wave (SDW) order,Hint in the
k space can be decoupled into a diagonal term and magnetic

term. Define c y
k� ¼ ðcyA0;k"; cyA1;k"; cyB0;k"; cyB1;k"Þ, ’y

k ¼
ðc y

k"; c
y
kþQ"; c�k#; c�kþQ#Þ, the Hamiltonian without ex-

ternal field in k space can bewritten as’y
kH0’k [26,27], with

H0 ¼

H0
t;k R IH�;k 0

R H0
t;kþQ 0 IH�;kþQ

IH�;k 0 �H0
t;k R

0 IH�;kþQ R �H0
t;kþQ

0
BBBBBB@

1
CCCCCCA; (3)

where I is a 4� 4 unit matrix, R ¼ �M
2 ðUþ JHÞHM,

and the corresponding H0
t;k ¼ Ht;k þ n

4 ð3U� 5JHÞI, with
n ¼ 2þ x. R relates to the magnetic order [26,27] with

HM ¼ I 0

0 I expiQ �RAB

 !
; (4)

in Eq. (4) I is a 2� 2 unit matrix. Due to SDW order, the
wave vector k is restricted in the magnetic Brillouin zone

(BZ). The self-consistent condition is M ¼ 1
2

P
�ðnA�" �

nA�#Þ ¼ 1
2Ns

P
�;k�c

y
A��kcA��kþQ, RAB is the distance of Fe

B to the origin sited byFeA.Ns is the number of unit cells.We
take Ns ¼ 512 to obtain self-consistent parameters and
Ns ¼ 768 in the calculation of �s. After diagonalizingP

k’
y
kH0’k ¼ P

kmEk;m�
yk
m �k

m by a 16� 16 canonical

transformation matrix T, we can obtain all properties of the
system without the external field.

Our investigation of the superfluid density �s follows the
linear response approach described by Refs. [1,33–35]. In
the presence of a slowly varying vector potential Axðr; tÞ ¼
Aðq;!Þeiq�ri�i!t along the x direction, the hopping term is

modified by a phase factor, cyi�cj� ! cyi�cj� expi
e
@c �R

ri
rj
Aðr; tÞ � dr. Throughout the Letter we set @ ¼ c ¼ 1.

By expanding the factors to the order of A2, we obtained
the total Hamiltonian Htot ¼ H0 þH0 with

H0 ¼ �X
i

Axðri; tÞ
�
eJPx ðriÞ þ 1

2
e2Axðri; tÞKxðriÞ

�
: (5)

JPx ðriÞ is the particle current density along the x axis,KxðriÞ
is the kinetic energy density along the x axis. Their ex-
pressions are

KxðriÞ ¼ � X
��0�	

ti;iþ	x
2
i;iþ	ðcyi��ciþ	;�0� þ H:c:Þ; (6)

JPx ðriÞ ¼ �i
X

��0�	
ti;iþ	xi;iþ	ðcyi��ciþ	;�0� � H:c:Þ; (7)

only 	 ¼ x, x� y have contributions to the x component
and xi;iþ	 ¼ 1 in our coordination. The charge current

density along the x axis is defined as

JQx ðriÞ � � 	H0

	Axðri; tÞ ¼ eJpx ðriÞ þ e2KxðriÞAxðri; tÞ: (8)

The kinetic energy is calculated to zeroth order of AxðriÞ,
corresponding to the diamagnetic part, and that of the
paramagnetic part JPx ðriÞ is calculated to the first order of
AxðriÞ. In the interaction representation we have

hJPx ðriÞi ¼ �i
Z t

�1
h½JPx ðri; tÞ; H0ðt0Þ��i0dt0

¼ � eAxðr; tÞ
Ns

�xxðq; !Þ; (9)

where hi represents the expectation value based on
the wave function of Htot while hi0 corresponds to the
wave function of H0. In the Matsubara formalism

we have the current-current correlation �xxðq; i!Þ ¼R

0 d�e

i!��xxðq; �Þ, and �xxðq; �Þ ¼ �hT�J
P
x ðq; �Þ�

JPx ð�q; 0Þi0 ¼ P
m1m2

�m1m2
xx ðq; �Þ where T� is the time

ordering operator, JPx ðq; �Þ ¼ e�H0JPx ðqÞe��H0 , JPx ðqÞ ¼P
ie

�iq�riJPx ðriÞ ¼
P

m1m2
JPm1;m2

ðqÞ is a summation over k.

Calculation of�xxðq; i!Þ is in the framework of equations
of motion of Green’s function,

d�m1m2
xx ðq;�Þ
d�

¼�½JPm1;m2
ðqÞ;JPx ð�qÞ��

�hT�e
H0�½H0;J

P
m1;m2

ðqÞ��e�H0�JPx ð�q;0Þi0:

A lengthy but straightforward algebra leads to

�xxðq; i!Þ ¼ X
km1m2

Yk;kþq
m1m2

Ykþq;k
m2m1

ðfðEk;m1
Þ � fðEkþq;m2

ÞÞ
i!þ ðEk;m1

�Ekþq;m2
Þ ;

(10)

where f is the Fermi distribution function. Through ana-
lytic continuation,�xxðq; !Þ is obtained. When! ¼ 0, the
derivative of f has an important contribution to�xxðq; i!Þ.
The quantity Yk;kþq

m1m2
can be expressed as
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Yk;kþq
m1m2

¼ 2

Ns

½t4ð�4ðsinkx�y þ sinkxþyÞ þ �0
4ðsinkQx�y þ sinkQxþyÞÞ

þ t3ð�2 sinkx�y þ ~�2 sinkxþy þ �0
2 sink

Q
x�y þ ~�0

2 sink
Q
xþyÞ

þ t2ð�2 sinkxþy þ ~�2 sinkx�y þ �0
2 sink

Q
xþy þ ~�0

2 sink
Q
x�yÞ

þ t1ð�1 sinkx þ �0
1 sink

Q
x Þ�; (11)

with �1 ¼ �k;kþq
1;3 þ�kþq;k

3;1 þ�kþq;k
9;11 þ�k;kþq

11;9 , �2¼
�k;kþq
1;1 þ�k;kþq

9;9 , ~�2¼�k;kþq
3;3 þ�k;kþq

11;11 , �4¼�k;kþq
1;2 þ

�kþq;k
2;1 þ�kþq;k

9;10 þ�k;kþq
10;9 , and�k;k0

ij ¼T�
i;m1

ðkÞTj;m2
ðk0Þþ

T�
iþ1;m1

ðkÞTjþ1;m2
ðk0Þ. The corresponding �0

i is connected

to �i by changing �i;j into �iþ4;jþ4. kx�y denotes kx � ky

and kQx�y ¼ kx�y þQ. The superfluid weight measures the

ratio of the superfluid density to the mass Ds=�e
2 ¼

�s=m
� ¼ �hJQx ðri; tÞi=e2AxðriÞ, and the Drude weight is

a measurement of the ratio of density of mobile charges to
their mass [1,33–35],

Ds

�e2
¼ 1

N
�xxðqx ¼ 0; qy ! 0; ! ¼ 0Þ � hKxi0; (12)

D

�e2
¼ 1

N
�xxðqx ¼ 0; qy ¼ 0; ! ! 0Þ � hKxi0: (13)

Figure 1 shows the variation of Ds, D, M and super-
conducting order � ¼ 1

4

P
�ð��

i;iþxþy þ �s
i;iþx�yÞ, as func-

tions of x at different temperatures. D does not change
much as the temperature varies and we plot it clearly in
Figs. 1(c) and 1(d). At zero temperature, we do not show

the plot of D because in almost all the doping levels
Ds ¼ D as long as � has finite value; Fig. 1(a) shows
that in the overdoped regime, the superconducting gap
disappears and Ds drops to zero, while D is finite just
like the plot in panels (c) and (d); hence, in the overdoped
levels when � ¼ 0 the system corresponds to metal. We
can see from Fig. 1(a) that at T ¼ 0, Ds increases with the
increase of x until it reaches the SDW boundary. In the
underdoped region x < 0:05, most of the Fermi surfaces
are gapped by SDW [24,29], doping is the major source of
charge carrier; hence, the superfluid density as well as
mobile charge density increase linearly with the increase
of x. While at larger doping 0:5< x< 0:1, SDW is sup-
pressed, the gapped surfaces shrinks significantly, and
more intrinsic charge carriers are released to the system
in addition to the doping carriers. This is the reason why
the increase of DS ¼ D with doping becomes more dra-
matic than the linear dependence in this region. After SDW
disappears, � dominates the behavior of Ds, and shows a
flat behavior in a considerably large doping range. In panel
(b) we show the variation of �ð0Þ as a function of x for
x � 0:3. We define �sðTÞ ¼ DsðTÞ ¼ �ðTÞ�2 with arbi-
trary units. Compared to the phase diagram in the inset,
we find that in the SDWþ SC coexisting regime, �ð0Þ
shows a sharp increase with the decrease of x, which is
in good agreement with experiments [12,13].
An external magnetic field can couple relevant correla-

tion functions; hence, �s is a nonlocal quantity, describing
the stiffness of the system. Figures 1(c) and 1(d) show that
at finite T, Ds deviates from D, the suppression of Ds is
stronger than that of�. For theU ¼ 4 case, the results (not
shown here) are very similar to the results presented here.
Temperature dependence of superfluid density is a quan-

tity reflecting the low-energy residual density of states
inside the superconducting gap. Equation (10) indicates

FIG. 1 (color online). Panels (a), (c), and (d) plot Ds (black
solid line), D (orange dashed line ), � (red dotted line), and M
(blue dash-dot-dotted line) as functions of x at different tem-
peratures. The right scale is for Ds and D while the left scale is
for � and M. Panel (b) plots �ð0Þ as a function of x. The inset of
panel (b) is the phase diagram of temperature T and x.

FIG. 2 (color online). Density of states at T ¼ 0:02 for differ-
ent x. All those calculations are for the U ¼ 3:4 case.
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that the difference between D and Ds is related to
the derivation of f near the Fermi surface, and can be
understood as excitation of quasiparticles �q. Figure 2

shows the density of states at T ¼ 0:02. For x ¼ 0:05
and 0.1 the gap is considerably larger, hence Ds is equal
or almost equal to D. Although there is a gap at x ¼ 0:2
[see Fig. 2(c)], it is small; therefore, f0ðEkÞ has its contri-
bution to Ds, and therefore Ds deviates from D.

We choose three typical doping levels, to show the
temperature T=Tc dependence of �sðTÞ=�sð0Þ and
�ðTÞ=�ð0Þ for U ¼ 3:4, as well as for U ¼ 4:0. From
Fig. 3 we can see that the suppression of superfluid density
is stronger than that of the superconducting order parame-
ter in all cases. At low temperatures, the curve of
�sðTÞ=�sð0Þ is flat, a characteristic of a nodeless super-
conducting gap.

As T increases, a linear-in-T behavior of superfluid
density is dominant in all cases. For U ¼ 3:4 cases, linear
functions �1:55T=Tc þ 1:52 and �1:57T=Tc þ 1:49 are
used to fit this kind of behavior for x ¼ 0:1 and x ¼ 0:2,
respectively, which are shown in Figs. 3(b) and 3(c). It is
consistent with the power-law behavior observed in the
experiments [11–16]. Interestingly, they are in good agree-
ment with the direct measurements of superfluid density in
films of Fe-pnictide superconductors in Ref. [14]. We show
our results and the experimental data (see Fig. 1(a) in
Ref. [14]) together in Fig. 3(d) (U ¼ 3:4 case) and 3ðd0Þ
(U ¼ 4:0 case), and their consistence is explicit. In order to
understand the wider linear T dependence of �sðTÞ, the

inset in Fig. 3(d) plots the renormalized �qðTÞ=�ðTcÞ as a
function of T=Tc at x ¼ 0:08; the red dashed line aids the
eyes. We can see that the number of excited quasiparticles
is exponentially small at low T with strong superconduc-
tivity, but it is proportional to linear T within a certain
temperature range before the superconductivity disappears.
The easy appearance of linear-in-T behavior is closely
related to anisotropic S� superconducting paring, since
in-gap states (Andreev states) may be induced in this
case. The ratio 2�kð0Þ=kBTc at optimal doping is about
4.3 (4:5) for the U ¼ 3:4ð4:0Þ system.
Experiments always measure ��ðTÞ ¼ �ðTÞ � �ð0Þ, so

we show the evolution of ��ðTÞ at selected doping con-
centrations forU ¼ 4:0 in Fig. 4(a). The results ofU ¼ 3:4
are very similar. In the low-temperature range the curve is
flat. At high temperature approaching the disappearance
of superconductivity, there is a jump for the value of
��ðTÞ, which we show by the colored solid dots. We fit
the evolution of ��ðTÞ to a power-law behavior. See
Fig. 4(a); the corresponding fitting function 4ðT=TcÞ3:6 �
ð2ðT=TcÞ3Þ is for data of x ¼ 0:05 (x ¼ 0:1, 0.2) and it may
be the reason why the experiments give different exponents
for different samples.
Experiments have shown that the Uemura relation [36]

holds [37] for a 1111 system but does not hold for a 122
system [38]. In Fig. 4(b), we plot Tc versus �sð0Þ based on
our model. The blue-dashed line (red-dotted line) is for the
U ¼ 3:4 (U ¼ 4:0) system. It shows that at very low
doping levels, about x < 0:035 (grey point), both the
U ¼ 3:4 and U ¼ 4 systems follow the same empirical
linear relation (grey line). As Tc close to the maximum and
�sð0Þ saturate at x > 0:08 (0.1) forU ¼ 3:4 (U ¼ 4:0), and
the data significantly deviate from the linear relation. This
is because in the very underdoped region the doping is a
major source of charge carriers and the Uemura relation is
valid here.
Based on a two-orbital phenomenological model, we

have studied the stiffness of superconductivity in clean

FIG. 3 (color online). Panels (a), (b), and (c) plot the renor-
malized superfluid density �sðTÞ=�sð0Þ and superconducting
order parameter �ðTÞ=�ð0Þ as functions of the temperature
T=Tc at different doping levels forU ¼ 3:4. Tsdw is the transition
temperature for SDW. The green dotted lines are linear-in-T
fitting functions. Panels (a0), (b0), and (c0) are similar but for
U ¼ 4:0. Panel (d),(d0) show the comparison of our results with
experiment data at x ¼ 0:08. Blue solid line in the inset of panel
(d0) plots �qðTÞ=�ðTcÞ as a function of T=Tc at x ¼ 0:08 and the

red dashed line is the aid for the eyes.

FIG. 4 (color online). Panel (a) plots ��ðTÞ as a function of
T=Tc at typical selected doping for U ¼ 4, the dashed lines are
the corresponding fitting functions. Panel (b) is the Uemura plot
of Fe-base superconductor. The x axis is �sð0Þ for different
doping, the y axis is the corresponding Tc for the given dopings.
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iron-based superconductors. At zero temperature, we find
�ð0Þ a sharp jump as x decreases in the regime of the
coexisting SDWþ SC orders; the variation of �ð0Þ as a
function of doping is in good agreement with experiments
[12]. As far as we know this is a new theoretical result. At
low temperatures, �sðTÞ=�sð0Þ is flat, then shows a linear-
in-T behavior before the system loses its superconductiv-
ity. It is in good agreement with experiments of direct
measurement of superfluid density in films [14]. The evo-
lution of ��ðTÞ roughly follows the power-law behavior
with different exponents corresponding to different doping
levels. Only at low doping levels, the empirical Uemura
linear relation holds for the iron-based superconductors.
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