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Unconventional superconductors host a plethora of interesting physical phenomena. However, the
standard theory of superconductors suggests that unconventional pairing is highly sensitive to disorder,
and hence can only be observed in ultraclean systems. We find that due to an emergent chiral symmetry,

spin-orbital locking can parametrically suppress pair decoherence introduced by impurity scattering in

odd-parity superconductors. Our work demonstrates that disorder is not an obstacle to realize odd-parity
superconductivity in materials with strong spin-orbit coupling.
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The quest for topological superconductors [1-5] is an
exciting research area in condensed matter physics. A
necessary condition for topological superconductors is
unconventional pairing symmetry. Based on an earlier
parity criterion [6], it has been shown that under fairly
general conditions, time-reversal-invariant topological
superconductivity is realized if the pairing symmetry is
odd under spatial inversion [7,8]. Such odd-parity pairing
occurs in the Ballian-Werthamer phase of superfluid
helium-3 [9], and likely in certain heavy fermion super-
conductors [10,11].

A recent theoretical study [7] suggests that doped
narrow-gap semiconductors are candidates for odd-parity
topological superconductors. Here the strong spin-orbital
coupling in the band structure favors a novel interorbital,
odd-parity pairing, even when the mechanism for super-
conductivity is conventional electron-phonon interaction.
Experimentally, several materials in this class, including
Cu-doped Bi,Se; [12], Tl-doped PbTe [13], and In-doped
SnTe [14], exhibit superconductivity with unusually high
transition temperatures (2—4 K) relative to their low carrier
densities ( ~ 10%° cm™3). Recently, some evidence of non
s-wave pairing in Cu,Bi,Se; has been reported [15-17],
including the presence of a zero-bias conductance peak in
point-contact spectroscopy [18,19].

An important issue in the study of unconventional
superconductors is their robustness against disorder.
Within the Bardeen-Cooper-Schrieffer theory, s-wave
pairing is immune to nonmagnetic impurities [20], while
other pairing symmetries are more fragile [21]. For
instance, the transition temperature of Sr,RuQ, that is
believed to be a spin-triplet superconductor is strongly
suppressed by disorder [22]. This seems to be a major
obstacle for realizing odd-parity superconductivity in
doped narrow-gap semiconductors.

In this Letter, we study the effect of disorder on the
proposed odd-parity superconducting state in narrow-gap
semiconductors [7,23]. We mostly focus on scalar
impurities which are usually the most common type of
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disorder. Such an isotropic scattering potential arises
from Coulomb interactions between the electrons and
lattice defects. Contrary to conventional wisdom, we
find that the destructive pair-breaking effect of disorder
is dramatically suppressed by an approximate chiral
symmetry in the spin-orbital locked band structure. In
view of our study, the prospect of topological super-
conductivity in narrow-gap semiconductors appears
brighter than before.

For concreteness, we start our analysis with the fol-
lowing noninteracting four band k - p Hamiltonian:

HO(k) = l//T(k)[ma-x + Uo—z(kxsy - kysx) + vzkzo-y]‘!/(k)
ey

H, has the form of a massive Dirac Hamiltonian. Here,
v and v, are the velocities of the electrons in the x—y
plane and z direction, respectively, while the Dirac mass
m (not to be confused with the effective mass) deter-
mines the energy gap between the bands. Equation (1)
describes the band structure of a broad class of narrow-
gap semiconductors with inversion symmetry near time-
reversal-invariant momenta [6]. For example, in the con-
text of doped Bi,Se;, PbTe, and SnTe, s; are Pauli
matrices in spin space, and o; are Pauli matrices asso-
ciated with the orbital degrees of freedom [23,24].
Specifically for doped Bi,Se;, we use o, = *1 to label
the two p,-like orbitals located at the upper and lower
part of the quintuple layer unit cell. The two orbitals
(+ and —) transform into each other under spatial
inversion with respect to the center of the unit cell.

Short range (phonon mediated) attractive interactions
can generate pairing with two distinct symmetries. One is
the conventional spin-singlet intraorbital state, while the
other is the unconventional spin-triplet, orbital singlet
paired state [7]:
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Ay(K) o Y (1K) (= K) = ¢, (K)o 1 (—K));

(2a)
A, (k) = Z (Y1 (K (=K) + ¥, (K) 1 (—K)).
(2b)

The A, pairing is invariant under all symmetry operations
of the D3, point group (s-wave), whereas A, is odd under
spatial inversion (which interchanges the two orbitals) and
belongs to the A;, representation. In Ref. [7] it has been
shown that, in the absence of disorder, the strength of the
interorbital and intraorbital attractive interaction deter-
mines which pairing susceptibility diverges more strongly.
Here, we examine the effect of disorder on the odd-parity
pairing assuming the interaction favors this state. In con-
trast to the well known p-wave spin-triplet superconduc-
tivity, here the A, order parameter is independent of
momentum, but has a nontrivial internal structure in orbital
and spin space. In the traditional p-wave superconductors
the order parameter varies over the Fermi surface, and
scattering of a Cooper pair from the states k, —k into k’,
—Kk’ results in their decoherence. Consequently, supercon-
ductivity dies when the elastic scattering rate becomes
comparable to the order parameter, 1/7 — A. Our result
shows that decoherence effects in the spin-triplet, orbital-
singlet paired state are significantly suppressed, and super-
conductivity survives much stronger levels of disorder until
(m/p)*/7— A.

To show quantitatively the effect of disorder on the onset
of superconductivity, we examine the pairing susceptibility
near the transition. First, we transform into the eigenstate
basis, in which the Hamiltonian is diagonal, H, =
Zk,jE(k)[c;f(k)cj(k) — a’;.r (k)d;(k)], where the dispersion
is E(k) = \/m2 + v?(kZ + k3) + vZkZ. Despite the strong
spin-orbital mixing in H,, the presence of both time-
reversal and inversion symmetries protects the twofold
degeneracy of the upper (c;, ¢,) and lower (d;, d,) bands
at every k. We chose to work in a particular basis [25],
which we dub pseudochiral, where the states at k and —k

are related (up to a k-dependent phase factor) by time-
reversal (0) and inversion (P) operations:

Oc; (k)OO ~ ¢/ (—K),
Pci(K)P~! ~ ¢p(—k),

Ocy) (k)OO ~ ¢y(—K),
Pe)(K)P~! ~ (k).  (3)

As long as the Hamiltonian has both time-reversal and
inversion symmetries, it is always possible to use the
basis satisfying the transformation properties described in
Eq. (3).

In the pseudochiral basis, the superconducting order
parameters (2a) and (2b) are given by:

Aj(k)ce™® Y (= 1)[{c;(K)e;(— k) +{d;(k)d;(—k))]

=12
(4a)
As(k) e cosay Y [{ej(k)e;(—k))—(d;(K)d;(—k))]
j=12
—2e" *sinag[{c;(k)dy(—k)) +{c,(k)d; (—k))].
(4b)

In the derivation of the above expressions and from now on
we rescaled the z component of the momentum by its
velocities, k = (k,, ky, v,k,/v). While the expressions
for the order parameters contain the azimuthal angle ¢
between (k,, k) and the x axis, they are independent of the
polar angle 6 between k and the z axis. The parameter
ay = sin~!'[m/E(k)]is a consequence of interorbital mix-
ing by the mass term.

In the limit m = 0(ay, = 0), the k - p Hamiltonian has a
U(1) chiral symmetry, [Hy, o,s.] = 0. Thus, the energy
eigenstates labeled by j = 1(2) have a well-defined chi-
rality +1(—1), which is evident from Eq. (4). Importantly,
pairing in both the even- and odd-parity states only occur
between electrons of the same chirality, but the order pa-
rameters differ by the relative phase between Cooper pairs
of opposite chirality (of different label j), 7 for A, and O for
A, [7]. Since scalar disorder potential (which is insensitive
to orbitals and spins) does not break chiral symmetry, im-
purities can scatter electrons only between states of equal
chirality. Hence, the disorder affects the even-parity pairing
A, and odd-parity pairing A, in the same way. Then, it
follows from the Anderson theorem [20] that as long as the
system is far from localization, both pairings are completely
robust against disorder. The magnitudes of two order pa-
rameters at zero temperature differ only by the strength of
the pairing interaction in the two channels, A,—;, =
Qexp{—1/voA,} with v, the density of states at the
Fermi energy, A, the attractive interaction in the even- or
odd-parity channel, and () an ultraviolet cutoff.

For nonzero m in the Hamiltonian H,,, the Bloch wave
functions are no longer chiral eigenstates, and the similar-
ity between the two order parameters is broken. Without
loss of generality, we assume that the chemical potential
lies in the upper energy band, u > |m|. Since only elec-
trons on the Fermi surface contribute to the divergent
pairing susceptibility at low temperature, the effective pair-
ing order parameter involves only the ¢ electrons of the
conduction bands:

Ay (k) % e'?[{c1(k)ci (—k)) — (e (k)cp(— k)], (5a)
Ay (k) = e'? cosal(c; (K)e (—k)) +{cr(k)er (k)] (5b)

Here a = sin"!(m/u) is evaluated at the Fermi energy.
One can see that for m # 0 the effective pairing potential
in the odd-parity channel between electrons in the conduc-
tion bands is reduced due to mixing with the valence
electrons [see Eq. (4b)]. Assuming the strength of the
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interorbital attraction is independent of the parameter
m/ w, the magnitude of the odd-pairing order parameter
at zero temperature becomes A, = Qexp{—1/v,cos>aA}.
The order parameter A, is reduced from its m = 0 not only
due to the dependence of the density of states on m/u,
v, = vgcosa, but mainly because the attractive interac-
tion is weaker by a factor of cosa. We wish to emphasize
that this change in the odd-symmetry order parameter is
not caused by pair breaking. Pair breaking effects reduce
the transition temperature, but not the zero temperature
order parameter [26].

Introducing scattering by a scalar disorder potential adds
a term into the Hamiltonian which is nondiagonal in the
momentum,  H(K, k') = Hy(k)dy i + Vimpth T (K) (k).
Transforming into the pseudochiral basis, one can see
that the impurities mix all bands. However, in the limit
ep7 > 1, all leading order processes occur near the Fermi
surface, and we can again restrict our attention to the
conduction bands. The matrix element between two states
at the Fermi energy, ¢,(k) and ¢ ;(k’), is given by

B Ak k') Ak, —k')sina ;
~ \A(-k,k)sina  A(-k, —k/) /) ©)

ij
Vk,k/

Here A(k, k') = Vip,[e'? %" cost cos + sing sinf] i
equal to the wave function overlap between two spins
pointing along k and k' directions. In the limit m = 0
(a = 0) the off-diagonal matrix elements vanish, restoring
the chiral symmetry.

To find the corrections to the electron self-energy 3, due
to scattering by disorder we use the self-consistent Born
approximation. Then the self-energy matrix for the two
conduction bands is diagonal and determined by two pro-
cesses, intraband scattering and scattering between the two
conduction bands [for illustration see Fig. 1(a)]. The self
energy is found from the following self-consistent equation:

S0, = — 2 sgn(w) =

W, 27 IVl lk’lzG

(2 )3

dk/ :
B )sVL’S’Vﬁ’/GL,W 0

where G'(k, w,) = iw, — [E(k) — u] — 2(k, ,) is
the Matsubara Green’s function of the electrons in the
band i. Examining the above equation, one can see that
the two scattering processes interfere constructively.
Consequently, the elastic scattering time satisfies 1 =
7TV Vi, (1 + sin*a).

As we explained above, while the transition temperature
is highly sensitive to pair decoherence mechanisms, the
zero temperature order parameter is not modified.
Therefore, we calculate the transition temperature into
the superconducting phase for the even- and odd-pairing
states from the corresponding pairing susceptibilities of the
normal state:

(b)

FIG. 1. The effect of disorder on the single particle Green’s
function and pair susceptibility. The self-consistent equation for
the self-energy [Eq. (7)] is illustrated in (a). The double line
represents the dressed electron Green’s function, and the dashed
line denotes the impurities. The equation for the Cooperon
[Eq. (9)] is illustrated in (b). Here, the Cooperon is drawn as a
filled triangle vertex.

x‘=ar Y TG, G
i, j, k,m
k, w,

w, Ci,j;k,m(wn)rl{im- (8)

Here, T j = 0ij[8i1 — 8;2] for the spin-singlet pairing
€=1, and T{; =8, ;cosa[8;; + 8;,] for the orbital-
singlet pairing € = 2. The matrix C,;y ,,(w,) is the
Cooperon describing multiple scattering events of two
electrons (a Cooper pair) in the particle-particle channel.
A pole in the Cooperon at w,, = 0 means that scattering by
impurities does not result in decoherence of Cooper pairs.
In other words, the probability of an electron in state k to
be scattered into state k’ is equal to the probability of its
partner to be scattered into the partner of k’. A Cooperon
with a finite mass, on the other hand, implies that pairing is
suppressed by disorder and that in the superconducting
state there are subgap excitations.

The Cooperon can be expressed in terms of the single
particle Green’s function and impurity scattering potential:

8ix8m + z

dk’
Ci, ';k,m(wn) = /
! =12 Qm)?

i, 17 It 14 t
X V V Gk’,wnG—k’,—w” Cp,z;k,m(wn)'

(€))

The only four components of the Cooperon that enter the
susceptibilities are C;;.;;. In the absence of impurities
Ci120=0Cs211 =0 and only the two components
Ci1.11 = Cyp0p matter. As a result, there is no difference
in the effect of disorder on both order parameters.
Similar to the single-particle self-energy, the Cooperon
includes processes in which the electrons remain in the
same band after scattering and those in which at least one

-k, —k’
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FIG. 2 (color online). The critical temperature as a function of
the level of disorder 7TV()Vi2mp for various values of «. Both T,
and 7TV0Vizmp are given in units of of T9, the critical temperature
for Vi, = 0. For comparison, the dashed line shows the tran-
sition temperature into the odd-parity superconducting state in
the absence of spin-orbital locking (as in Helium-III). One can
see that up to a = 0.5 the critical level of disorder in which the
unconventional order parameter disappears is dramatically
higher than in Helium-III.

electron changes its band. However, while the interference
between the scattering events that determine the elastic
scattering time is constructive, the Cooperon is a sum of
constructive and destructive interference terms. This can

be seen in the expressions for C;;.; ;:

c B 1 +2|w,|r
PR 4 2| |T — 7TVaVi2mpT(1 — sin’a)
. 1+2
+ (=™ lwng in2a)’
1 +2|w,| — 7v, V2 _7(1 + sin’a)

imp

(10)

Note that the above expression for the Cooperon has
been calculated only assuming that ep7 >> 1. Now the
two susceptibilities, y! and y?, are no longer identical. The
even-pairing susceptibility includes only the constructive
interference processes, x' = 47Ty, vo7[1 — mv, Vi 7X
(I +sin’a)(1 = 2|w,|7)]™! =27TY, v,/lw,|, and is
clearly insensitive to disorder. In contrast, the susceptibility
for odd-pairing is determined by the destructive interference,
and hence, affected by impurities:

2
, TV ,Ccos2a
=T
X wz,, lw,| + sina/7(1 + sin*a)
Q 1 sina
valcos )| I = U\3 ¥ S T sntar
(11)

where /(x) is the digamma function.

Let us explain the above result. The pair decoherence
rate, 1/7, = (sin’a)/(1 + sin*a)7, which reduces the
transition temperature enters the Cooperon as a mass
term eliminating its divergence. When 1/7, is larger
than the order parameter in the absence of pair decoher-
ence, superconductivity disappears. We found that disorder
introduces a pair breaking mechanism for the odd-parity
pairing but not for the even-parity pairing, and that the key
difference between the two-order parameters is the phase
between the condensates in the two conducting bands.
Therefore, we conclude that the decoherence is due to
the tendency of the impurity scattering to favor a
relative phase of 7 between the conduction bands (the
singlet pairing), suppressing the spin-triplet transition
temperature:

I“T}(ér) = ‘”(%)‘ ‘”(%*ﬁ

). (12)

Here we use T to denote the transition temperature at
1/7 = 0 and finite «, and C = 7/2¢? with vy the Euler
constant. The suppression of T, as a function of disorder
for various values of « is illustrated in Fig. 2.

To understand better the peculiarity of this result, it is
instructive to compare our result, applicable for the
narrow-gap semiconductors, with the Ballian-Werthamer
superfluid phase in He-III. Although the latter has a
single band without spin-orbit coupling, one can choose
a basis in which spin is locked to be parallel, ¢,(k), or
antiparallel, ¢,(Kk) to the momentum. This basis ¢ resem-
bles the chiral basis we used here. Correspondingly, in both
cases the odd-parity order parameters can be written as
e?[p,(K)p;(—k) + ¢,(k)d,(—Kk)]. The key difference
between systems with and without spin-orbital locking
manifests itself in the impurity scattering. While in
helium-III, the matrix element for impurity scattering be-
tween ¢ (k) and ¢,(K’) are larger than the diagonal terms,
in the problem studied here the interband scattering is
parametrically smaller than the intraband one by a factor
of sine = m/ u, due to the approximate chiral symmetry
that becomes exact as m — 0. Thus, the pair decoherence
in the narrow-gap semiconductors is significantly weaker
than in Helium-III. Note that this observation is only
correct for scalar disorder, and does not hold for other
types of scattering potentials, such as magnetic impurities
(o< ) or orbital dependent potentials ( o &). These non-
scalar disorder potentials cause stronger pair decoherence
and suppress the unconventional superconducting state.

Our result can be generalized to 2D bilayer band struc-
tures obtained by setting k, = 0 in the k - p Hamiltonian
(1). Recently, it has been proposed [27] that this class of
bilayer systems with Rashba spin-orbit coupling favors
odd-parity superconductivity similar to the 3D case. Our
analysis shows a similar robustness against disorder due to
the chiral symmetry (See Supplemental Material [28]).
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To conclude, we showed that certain types of odd-parity
pairing in doped narrow-gap semiconductors can survive
from a fairly large amount of impurity scattering. The
relative robustness of these systems results from an ap-
proximate chiral symmetry in the spin-orbital locked band
structure and the odd-parity pairing order parameter.
Although scattering by disorder reduces the phase coher-
ence of the Cooper pairs, the dephasing rate 1/7, =

7V, Vi, sin®a vanishes as the Dirac mass (= band gap)
in the band structure goes to zero, when the chiral symme-
try becomes exact. Finally, we note that in addition to
centrosymmetric materials studied in this work, strong
spin-orbit-coupling in asymmetric interface structures
can also protect unconventional superconductivity against
disorder [29].
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