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We introduce density matrix embedding theory (DMET), a quantum embedding theory for computing
frequency-independent quantities, such as ground-state properties, of infinite systems. Like dynamical
mean-field theory, DMET maps the bulk interacting system to a simpler impurity model and is exact in the
noninteracting and atomic limits. Unlike dynamical mean-field theory, DMET is formulated in terms of
the frequency-independent local density matrix, rather than the local Green’s function. In addition, it
features a finite, algebraically constructible bath of only one bath site per impurity site, with no bath
discretization error. Frequency independence and the minimal bath make DMET a computationally simple
and efficient method. We test the theory in the one-dimensional and two-dimensional Hubbard models
at and away from half filling, and we find that compared to benchmark data, total energies, correlation
functions, and metal-insulator transitions are well reproduced, at a tiny computational cost.
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Dynamical mean-field theory [1-5] (DMFT) has devel-
oped into a powerful embedding framework for bulk quan-
tum systems. Its central idea is to self-consistently map the
infinite bulk system to an impurity model, which contains
only a few interacting impurity sites, embedded in an infi-
nite noninteracting bath [1-5]. In many settings, such im-
purity models can be solved using high-level many-body
methods (so called impurity solvers) [6—14]. Through the
bath embedding, DMFT yields predictions that closely
approach the bulk limit, despite the greatly simplified treat-
ment of interactions.

The basic quantum variable in DMFT is the local
Green’s function, ig;;(w) = <aj[w —(H—E)"a. As
a function of frequency, it provides access to the local
density of states as well as to static quantities such as
energies. However, there are reasons to consider simpler
frequency-independent quantum variables, too. For many
applications frequency information is not required; for
example, energies can be calculated from time-
independent states alone, as can energy derivatives such
as compressibilities or static correlation functions, and
many other properties. Additionally, calculating stationary
states, such as the ground state, is much easier than calcu-
lating Green’s functions, not the least due to the practical
availability of many powerful numerical techniques (e.g.,
the density matrix renormalization group and its tensor
network extensions [15,16], coupled cluster and configu-
ration interaction theories [17], and lattice diffusion [18],
auxiliary field [19], and variational Monte Carlo calcula-
tions [20,21]). An embedding framework based on a
frequency-independent variable offers a potentially more
efficient as well as a more flexible route to access static
properties of bulk systems, including the possibility of
using ground-state methods as impurity solvers.

Here, we propose a density matrix embedding theory
(DMET) with the following features: (i) the infinite bulk
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problem is mapped onto a self-consistent impurity prob-
lem, consisting of interacting impurity and noninteracting
bath sites, (ii) the single-particle density matrix <a;ra ) is
the quantum variable, rather than the Green’s function, and
no frequency-dependent quantities appear in the theory,
(iii) the bath representation consists of a single bath site per
impurity site (which is sufficient to exactly capture embed-
ding effects at the mean-field level), and (iv) the bath can
be constructed algebraically without any fitting. Feature (i)
is analogous to DMFT, and as we show below, the basic
physics of DMET is similar to DMFT. Features (ii-iv),
however, are different. They allow for the primary numeri-
cal advantage of DMET: computing ground-state proper-
ties of a cluster model with L impurity sites requires only
solving for the ground state of a cluster plus bath problem
of size 2L, and this is much cheaper than the corresponding
DMFT calculation.

To motivate the DMET construction, we first consider an
exact single-site embedding of the infinite lattice Hubbard
model, with the Hamiltonian

H = z ta;rgajg + ZUniTnil- @))]
(ij)o i

For simplicity, we focus on ground-state properties, but we
outline the extension to excited and thermal states below.
The ground state |¥) of H can be mapped to the ground
state of a simple impurity model, consisting of a single
impurity site embedded with a single bath site, and with
Hamiltonian H’. This follows from the Schmidt decom-
position of |, |¥) = M \;|a;)| B;) [22], where |a;) are
states of a single Hubbard site (viewed as an impurity) and
| B;) are states in the Hilbert space of the remaining lattice
sites. Note that the number of |B;) states, M, equals the
number of states of the single impurity site. Consequently,
|B;) can be interpreted as the states of a single bath site.
With this identification, the exact impurity Hamiltonian H’
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(with the same ground state as H) may be constructed by
projecting H onto the Schmidt basis of impurity and
bath states, H' =3, /la;B8;Xa;B;|H|ayBy)Xa;B;l.
More explicitly, H' can be expressed using the impurity
and bath fermionic operators alt), pt),

H =c+ Zeﬁb:r,b(, + v(aj,b(, + b:r,a(,)

+ Z v’mg(az,ba/ + b:rr,aa/) + Umny + Ugmym,

o#a!
(2)

where n, = a:r,ao, my, = b:r,bm and ¢, €g, v, v/, Ug
follow from matrix elements of H with the Schmidt basis,
for example, v = (ayBy|H|a; B;). Because the impurity
Hamiltonian H' has the same ground state |W) as the
Hubbard Hamiltonian H, expectation values of the infinite
lattice can be obtained exactly from the impurity model.
(This is very different from DMFT, where expectation
values of the lattice and impurity model are not related in
a simple way). For example, the local density matrix is
given by (ala,)y = (ag”aot,.}H [the latter referring to
lattice sites, Eq. (1)], while the lattice Hubbard energy
per site, E, is obtained from the terms in H' which contain
the impurity at operator, E = (3 v(abb, + bra,) +
Zﬁa/v’m”(az,b(ﬂ + b:rf,a,,/) + Unny)y.

The above construction shows that an impurity model
with a single impurity site and a single bath site is in
principle sufficient to exactly represent ground-state prop-
erties. However, the exact construction is not practically
useful: the bath terms in H' require knowledge of the
interacting ground state |'¥) on the infinite lattice and its
Schmidt decomposition. The basic idea in DMET is to
replace the exact embedding of the Hamiltonian H by
one that is exact for a one-particle mean-field lattice
Hamiltonian 4. The corresponding mean-field embedding
bath terms are then easy to compute because the ground
state of h is a Slater determinant |®), and its Schmidt
decomposition is easily obtained, at a cost no greater
than the one-particle diagonalization of # itself [22-24].
As h we choose the one-particle part of H combined
with an on-site mean-field interaction operator u (to be
determined),

h= Z ta;rgaj[, + Zu(nﬂ + ny). 3)
(ipo io
The corresponding DMET impurity Hamiltonian Hj,, con-

tains a single interacting impurity site, now embedded with
a noninteracting bath site,

Himp = Z[U(a;bg— + bj;a,,—) + ftbz—b(r] + Ul’lTl’ll. (4)

The terms involving the bath operators b'f) in Hip,, are
constructed analogously to the bath terms in Eq. (2), by
projecting & onto the Schmidt basis of D), e.g., given

|®) = 37 Ala) B:), v = (aoBilhla;By). Note that the
bath terms arising in this way contain only one-particle
operators. The mean-field interaction operator u, which
defines both the lattice Hamiltonian 4 and (indirectly) the
impurity Hamiltonian Hjy,, is analogous to the DMFT
self-energy. By changing u, we also change the bath terms
in Hjp,p,, and we can adjust u to obtain a mean-field embed-
ding that optimally mimics the exact embedding. One way
is to require full self-consistency of the local density
matrix, that is, that the mean-field lattice Hamiltonian &
and the DMET impurity Hamiltonian H;,, yield the same

local density matrix: <a2;a(,)Himp = <a(J)rg‘100>h- This is
similar to the self-consistency condition on the Green’s
function in DMFT. We here use a slightly different self-
consistency condition, which we have found to be numeri-
cally favorable. We minimize the difference between the
total density matrices (using both impurity and bath opera-

tors) evaluated for the ground states of 4 and Hjp,y,

rrgn Z (<C¢JrrCa>Himp_<CZ-Co>h)2- (5)

o,cE{a,b}

This approximately maximizes the overlap between the
mean field wave function and the full wave function in
the impurity model. Other choices are possible, similar to
the different choices of self-consistency condition in
DMEFT and self-energy functional theories [5,25].

In the exact embedding construction, the impurity
Hamiltonian H’ and the infinite Hubbard Hamiltonian H
shared the same ground state; thus, exact expectation val-
ues could be obtained from the impurity model. In the case
of the DMET impurity Hamiltonian Hjp,y, this is no longer
the case, because the embedding is constructed for the
mean-field & rather than H. Nonetheless, in DMET we
make the approximation that lattice quantities are approxi-
mated by the expectation values of the impurity model.
The local density matrix in DMET is thus defined as
<a:§a,,>Himp, and the energy per site is

(6)

E= Zv(a:r,bg + bla,,)Himp + U<”T”1>Himp'
g

Note that this energy expression is not variational because

the embedding in DMET is not exact.

So far we have discussed single-site DMET. Cluster
extensions can also be formulated. The simplest cluster
extension of DMET for L impurity sites is analogous to L
site cellular DMFT [5], and the impurity Hamiltonian Hj,,
is given by

L
Himp = Z Z [vij(aja—bjtr + b;'rgajrr) + ﬂl/b;ro'b/(r]

o ij=I

+ UniTniL (7)

where the bath bgﬂ, interaction u;;, and coupling v;; op-
erators are all generalized to L sites. The construction of
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E(n) with various cluster sizes: (a) 1D Hubbard model, and (b) 2D Hubbard model. In both cases good

agreement with reference data is found. For (b), quantum Monte Carlo reference data are taken from Refs. [28,29].

the couplings from the Schmidt basis of A, the self-
consistency conditions on u#, and the approximation of
lattice quantities by impurity quantities are all directly
analogous to the single-site case. Note that this kind of
cluster DMET breaks translational invariance, similarly to
cellular DMFT [5].

Further extensions are possible, but not followed here.
While we have focused on ground states, the DMET con-
struction is equally applicable to excited states (by carrying
out the Schmidt decomposition for the excited state, rather
than the ground state). In the case of thermal states, we
would regard exp(—BH) as a state vector in the enlarged
Liouville space to carry out the Schmidt decomposition,
leading to impurity and bath sites with twice the number of
degrees of freedom as in the case of pure states.

How does DMET perform? Similarly to DMFT, the
DMET construction is exact in the noninteracting
(U = 0) and atomic (¢ = 0) limits of the Hubbard model
[3]. In the noninteracting limit, the mean-field lattice
Hamiltonian and Hubbard Hamiltonian are the same,
h = H; thus the mean-field embedding used in DMET is
exact. In the atomic limit, the Hubbard Hamiltonian de-
couples the sites, the impurity-bath coupling v = 0 van-
ishes, and the impurity expectation values are identical to
Hubbard model expectation values. DMET thus acts
similarly to DMFT in providing an interpolation between
metallic and Mott insulating behavior. Note also that
DMET has the same diagrammatic structure as DMFT;
solution of the impurity Hamiltonian with an exact local
interaction ensures that the resulting observables have
diagrams where the local interactions are treated to all
orders. The different self-consistency condition and bath
construction, however, mean that the theories are not iden-
tical even in the static limit.

To assess the validity and accuracy of DMET away from
exact limits, we now turn to numerical DMET studies of
the 1D and 2D Hubbard models, as a function of U and
filling. These models were chosen because high-quality
reference data are available. In one dimension, we compare
to exact results from the Bethe ansatz [26,27], while in two
dimensions we compare to recent auxiliary field quantum
Monte Carlo calculations [28,29]. In the numerical DMET

calculations, the infinite lattice used to define the mean-
field Hamiltonian /4 in Eq. (3) is approximated by a large
lattice with antiperiodic boundary conditions, using 480
sites in the 1D case, and 24 X 48 sites in the 2D case.
The resulting finite size errors are substantially smaller
than the intrinsic errors from the DMET approximation.
For the DMET impurity solver we employed an exact
diagonalization algorithm [30]. The full source code for
the prototype DMET and the impurity solver is freely
available [24].

We first discuss the ability of DMET to describe ener-
getics and correlation functions in the 1D and 2D Hubbard
models. Figure 1 gives the energy per site E, as a function
of site occupancy n, using DMET of various cluster sizes.
Note that while the 1D Bethe ansatz results are exact, the
2D AFQMC reference data are not [28], except at half
filling [29]. As seen from the figure, the overall shapes
of the reference E(n) curves are reproduced well.
Unsurprisingly, DMET is most accurate at smaller U.
The accuracy increases with impurity cluster size, but
even single-sitt DMET produces reasonable energies: at
half filling in one dimension, single-site DMET is accurate
t00.12% at U = 1, and 4% at U = 4, while at half filling in
two dimensions, it is accurate to 1.8% at U = 4. In Fig. 2
we plot the local double occupancy (n;n;), which is a
measure of the Mott insulating character of the state [31].

0.25 T T T T T T

— " BA (exact
- =1 e
> L - 2site
& 020 — 1site
>
g 015} .
[]
Q.
>
8 0.10
o
Q —— .
3 005
8 =13 —

i I —————
O'OOO 1 2 3 4 5 6 7 8

Correlation strength U /¢

FIG. 2 (color online). 1D Hubbard model: Local double occu-
pancy (n{ - nf) as function of U; at half, 2/6, and 1/6 filling.
Except for the 1-site DMET case, the reference shapes are well
reproduced.
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FIG. 3 (color online). Metal-insulator transition in the 1D-
Hubbard model: a Mott gap is seen for cluster sizes >1. The
size of the gap is accurately reproduced.

DMET also gives a good description of this quantity,
although at half filling, single-site DMET does not capture
the correct change in curvature of {n;n)) as a function of U
due to the neglect of short-range singlet formation, while
larger clusters recover this interaction effect.

A central question in the DMFT treatment of the 1D and
2D Hubbard models is the location and nature of the metal-
insulator transition and the corresponding size of the Mott
gap [32-34]. In the antiferromagnetic DMFT solution a
gap opens at U = 0 due to perfect nesting. The paramag-
netic DMFT solution is more complicated, and there is a
critical interaction strength U, which depends on the clus-
ter size, beyond which a Mott insulator paramagnetic
solution is stabilized. In a ground-state calculation, the
opening of a Mott gap can be detected by a vanishing
compressibility, d{n)/dw. In Fig. 3 we plot (n) against u
for DMET calculations on the 1D Hubbard model. In the
antiferromagnetic DMET calculations, a gap opens at
U = 0 as in DMFT. In the paramagnetic DMET calcula-
tions, a Mott transition is observed in the cluster DMET
calculations for larger U’s, although not in the single-site
DMET. Note that single-site DMFT also does not display a
Mott transition at moderate U [35]. Compared to the Bethe
ansatz, the Mott gap is well reproduced, with the error
decreasing with cluster size. The n(u) behavior close to
half filling shows a bistability, indicating that the metal-
insulator transition is likely to be first order, similar to what
is found in DMFT. As seen from Fig. 4, the shape of the
n(u) curves resembles that obtained in recent cellular
DMEFT studies [35,36]. In the 2D Hubbard model, using
a 2 X 2 cluster DMET, we find coexistence of metallic
and insulating paramagnetic solutions over a range of U,
in addition to the antiferromagnetic solution (which is
correctly identified as the lowest energy phase). The coex-
istence region starts at about U = 6 and extends to U =
10.5. However, the metallic solution is clearly favored
up to U =95 as seen from Fig. 5 (left). Cluster
DMFT [32,33] and variational plaquette [34] calcula-
tions also show a significant coexistence region for para-
magnetic metallic and insulating solutions with the
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2-site DMFT, Koch et al.
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FIG. 4 (color online). Comparison of DMET and DMFT de-
scriptions of the metal-insulator transition. DMFT data are taken
from Ref. [36].

metal-insulator transition occurring near U =~ 6. In Fig. 5
(right) we plot n(u) for U = 12. We see that the structure
away from half filling is more complicated than in the 1D
plots. Note that this behavior occurs at moderate doping
where complex phases of the Hubbard model are expected
to exist. Overall, we find that the DMET and DMFT
descriptions of the paramagnetic metal-insulator transition
are similar, but the DMET calculations of ground-state
properties are much cheaper: each one requires computing
only the ground state on a very small number of sites,
which takes only seconds.

To summarize, here we introduced a density matrix
embedding theory to obtain properties of infinite bulk
interacting systems from a simpler embedded quantum
impurity model. While similar to DMFT, DMET is formu-
lated in terms of the frequency independent local density
matrix. The absence of frequency yields both formal and
practical advantages. Further, the DMET bath construction
requires only a small number of sites (one per impurity),
and is obtained algebraically without nonlinear fitting.
There is no bath discretization error. The simple bath
construction and lack of frequency means that DMET
calculations for static properties are much simpler and
faster than the corresponding DMFT calculations. We
showed that DMET contains similar local physics and is
exact in the same limits as DMFT, namely for weak
interactions and weak couplings. Furthermore, for the 1D
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FIG. 5 (color online). 2D Hubbard model. (left) Phase stability
of metallic and insulating solutions at half filling as function of
U. (right) Paramagnetic metal-insulator transition at U = 12.
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and 2D Hubbard models, accurate behavior for the ener-
getics, correlations, and metal-insulator transition was ob-
served. Consequently, we conclude that DMET provides an
appealing alternative to DMFT for the ground-state prop-
erties of infinite interacting systems.

The simplicity of DMET also allows for many exten-
sions. For example, long-range interactions can be consid-
ered by projecting the full interacting Hamiltonian into the
embedding basis instead of using Eq. (4); initial tests on
chemical model systems show excellent results and will be
presented elsewhere [37]. Applications to further problems
are now underway.
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