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We present a study of the entanglement in the electronic structure of the late transition metal

monoxides—MnO, FeO, CoO, and NiO—obtained by means of density-functional theory in the local

density approximation combined with dynamical mean-field theory. The impurity problem is solved

through exact diagonalization, which grants full access to the thermally mixed many-body ground state

density operator. The quality of the electronic structure is affirmed through a direct comparison between

the calculated electronic excitation spectrum and photoemission experiments. Our treatment allows for a

quantitative investigation of the entanglement in the electronic structure. Two main sources of entangle-

ment are explicitly resolved through the use of a fidelity based geometrical entanglement measure, and

additional information is gained from a complementary entropic entanglement measure. We show that the

interplay of crystal field effects and Coulomb interaction causes the entanglement in CoO to take a

particularly intricate form.
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Entanglement is a fundamental aspect of quantum
mechanics, responsible for a large range of complex phe-
nomena not present in a classical setting. The entangle-
ment of distinguishable particles was historically seen as
something spooky, but is now considered a valuable re-
source. It plays an essential role in quantum information
theory, and has been studied in great detail both theoreti-
cally and experimentally [1]. Entanglement of indistin-
guishable particles has received less explicit attention,
but it has been studied indirectly in both the quantum
chemistry and condensed matter communities. Describ-
ing the electronic structure of materials with a pure sepa-
rable state, represented as a single Slater determinant, is
at the very heart of the modern computational approaches,
and the inability to do so is known under the term
correlation. The term encompasses both classical and
quantum correlations (entanglement), where the former
results in mixed states and the latter in entangled states.
The presence of entanglement is usually considered a
computational complication as it prevents the use of
these standard approaches. The development of reliable
computational methods and entanglement measures are
of key importance to turn also the entanglement of indis-
tinguishable particles from a complication into a potential
resource.

Well known examples of strongly correlated materials
are the late transition metal monoxides (TMOs)—MnO,
FeO, CoO, and NiO—which have been under intense
experimental and theoretical attention for a long time
[2–4]. Here we report on a theoretical description of the
late TMOs using the local density approximation (LDA)
plus dynamical mean field theory (DMFT) [5] where the
effective impurity model is solved by exact diagonalization
(ED) [6]. The quality of the results is assessed through a
direct comparison between the computed spectral function

and photoemission experiments [x-ray photoemission
spectroscopy (XPS) or bremsstrahlung isochromat spec-
troscopy (BIS)]. We then take advantage of the direct
access to the local many-body ground state of the impurity
problem to analyse the entanglement in detail.
The LDAþ DMFT scheme is built around the mapping

of the local lattice problem to an effective impurity prob-
lem. The impurity system is described in ED through the

local projected LDAHamiltonian ĤLDA, a double counting

term ĤDC, the on-site Coulomb interaction Û, and a few
auxiliary bath states, giving the Hamiltonian

ĤED ¼ X
ij

ð ~HLDA
ij � ~HDC

ij Þĉyi ĉj þ
1

2

X
ijkl

~Uijklĉ
y
i ĉ

y
j ĉlĉk

þX
im

ð~Vimĉ
y
i ĉm þ H:c:Þ þX

m

~Emĉ
y
mĉm; (1)

where the indices i, j, k, l run over the local correlated
orbitals and m runs over the auxiliary bath states. The
energies Em and the hybridization strength Vim of the aux-
iliary bath states mimic the hybridization between the
TM-3d and the O-2p and O-2s orbitals. The Hamiltonian
of the finite system is diagonalized numerically to produce
an analytical self-energy. The calculations were carried out
in the paramagnetic (PM) phase, using a finite temperature
(� ¼ 0:00173 Ry) fully charge self-consistent LDAþ
DMFT implementation [7–10]. Further technical details,

including the parametrization of ~Uijkl and the fitting of Em

and Vim, can be found in the Supplemental Material [11].
In Fig. 1 the calculated projected spectral function of

the TM-3d and O-2p states are compared to experimental
XPS (electron removal) and BIS (electron addition) data
[12,13] showing mainly the contribution of the TM-3d
states, due to the photon energies used. The overall agree-
ment for MnO, CoO, and NiO is excellent, and even minor
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experimental features like the high energy satellites are
found in our theory. The CoO sample used in the experi-
ment was doped with 1% Li to avoid charging effects.
However, this doping gives rise to Co3O4-like domains in
the sample, which contribute to the early onset seen in the
BIS spectrum [13]. The projected spectral function of FeO
shows an acceptable agreement with the experimental
spectrum, although the relative intensities could be im-
proved. A greater concern is that the initial shoulder at
�0:5 eV is missing and that the peak at 3.5 eV is not
evident in the experimental data. However, this may be
related to the fact that the experiment was performed with a
nonstoichiometric sample (Fe0:95O) containing Fe3O4-like
domains [14,15], in contrast to the conventional FeO unit
cell used in the calculation. Nevertheless, it can not be
ruled out that these features are beyond what can be
described with the current method.
Given the satisfactory comparison of the spectral prop-

erties with experimental data, we now turn our attention to
the entanglement in the thermal many-body ground state of
the impurity problem, described by the density operator

�̂T ¼ e��HED
=Trðe��HEDÞ. Before we start, let us, for

clarity, briefly recapitulate the definitions of pure, mixed,
separable, and entangled [16] N-electron many-body
states. A pure state is a state which can be described by a
state vector j�i, while a mixed state requires the use of a
density operator �̂. A mixed state is said to be classically
correlated as its components are related through classical
probabilities. A separable (nonentangled) pure state j�0i
can be written as a single Slater determinant [1], while an
entangled pure state j�i requires a superposition of several
Slater determinants. An entangled state is said to be quan-
tum correlated as the superposition between its compo-
nents is a quantum mechanical phenomenon. Finally, a
separable mixed state can be written in a diagonal form
�̂0 ¼ P

ipij�0
iih�0

ij using only separable component states
j�0

ii, while an entangled mixed state requires at least one
entangled component [1]. A key point in the definition of
mixed state entanglement is that a classical mixture of any
two separable states remains separable.
There exist several ways to measure the entanglement in

an N-electron many-body state [1]. In the case of a pure
state j�i, we first look at the geometric entanglement
measure [17]

EG½j�ih�j� ¼ 1�max
j�0i

jh�0j�ij2; (2)

where j�0i is restricted to be pure and separable. From a
computational point of view this measure is natural since
j�0i corresponds to the best possible single Slater deter-
minant description of the system. We perform the search
for the optimal j�0i by recursively removing one electron
at a time from the natural orbitals of the many-body state
[11]. Although this procedure is, in general, not guaranteed
to find the optimal j�0i, it is exact for separable states and
for pure 2-electron systems.
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FIG. 1 (color online). Spectral function of the TM 3d states
(thick black lines) and O 2p states (dashed red lines) in MnO,
FeO, CoO, and NiO, and corresponding XPS/BIS data (black
circles) [12,13]. The Fermi level is at zero energy.
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In order to analyse the thermal density operator �̂T , it is
necessary to generalize the entanglement measure EG in
Eq. (2) to mixed states. This can be achieved by replacing
the overlap with the fidelity [18] between �̂T and any
separable state �̂0,

EG½�̂T� ¼ 1�max
�̂0

Tr½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂T

q
�̂0

ffiffiffiffiffiffi
�̂T

qr
�2; (3)

where �̂0 ¼ P
ipij�0

iih�0
ij,
P

ipi ¼ 1, and j�0
ii are sepa-

rable states. Performing the restrained maximization in
Eq. (3) is a formidable task, as one has to consider the
effect of mixing several nonorthogonal separable states.
However, the problem can be simplified in the PM phase of
a system with negligible spin-orbit interaction by noting

that ĤED then commutes with Ŝ2, Ŝz and its ladder opera-

tors Ŝ�. This implies that there is a common eigenbasis in
which the many-body eigenstates j�s

i;ms
i can be indexed by

sðsþ 1Þ ¼ hŜ2i, and ms ¼ hŜzi, and that the eigenvalues
Es
i are independent of ms. If the system has a well-defined

spin moment, e.g., due to a strong on-site Hund’s coupling,
its thermal density matrix is composed of a mixture of
several degenerate eigenstates, all with the same spin
quantum number s

�̂T ¼ X
i

pi�̂
T
i ¼ X

i

pi

2sþ 1

Xs
ms¼�s

j�s
i;ms

ih�s
i;ms

j: (4)

We also observe that the spin-coherent operator Ŝ� ¼
expð�Ŝ�Þð1þ j�j2Þ�Ŝz conserves the entanglement [11]
of the maximally spin-polarized state j�s

i;si. Setting

�m ¼ exp½2i�m=ð2sþ 1Þ� yields

�̂T
i ¼ Xs

m¼�s

�̂�m

i

2sþ 1
� Xs

m¼�s

N̂zŜ�m
j�s

i;sih�s
i;sjŜy

�m
N̂y

z

2sþ 1
; (5)

where

N̂ z ¼ 2s=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s

s� Ŝz

� �
ð2sþ 1Þ

s

When applying the proposed Slater search algorithm to the

pure state �̂�m

i of the TMOs, the maximal overlap is always

obtained for Ŝ�m
j�s0

i;si, where j�s0
i;si is the closest separable

state to j�s
i;si. Hence, the separable state

�̂0
i ¼

1

2sþ 1

Xs
m¼�s

Ŝ�m
j�s0

i;sih�s0
i;sjŜy

�m
; (6)

gives a local minimum of EG½�̂T
i �. Moreover, each term

�̂�m

i contains the same amount of entanglement, originating
from the material specific j�s

i;si and the action of the

renormalization operator N̂z. Therefore we conjecture that
the local minimum given by �̂0

i is in fact a global minimum.
The geometric entanglement measure for the PM state
�̂T can then be written as [11]

EG½�̂T� ¼ 1� 1� EG½�̂T
s �

22sð2sþ 1Þ

2
4 Xs

m¼�s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s

s�m

 !vuut
3
52

; (7)

where �̂T
s ¼ P

ipij�s
i;sih�s

i;sj. Even when EG½�̂T
s � is zero

there is still a nontrivial term remaining in Eq. (7). This
source of entanglement is very robust as it does not depend
on the details of the electronic structure of the system but

only on hŜ2i.
As a complement to the geometric entanglement mea-

sure we have used an entropic measure, based on the
reduction of the many-body density matrix �̂ to the one-

particle reduced density matrix ~�ij ¼ Trð�̂cyj ciÞ. This re-
duction converts the entanglement in �̂ to entropy, which
can be measured directly [1,19], e.g., in the form of linear

entropy SL½~�� ¼ Tr½~�ð~1� ~�Þ�. However, quantifying
entanglement in the form of entropy requires care, as also
the classical correlation in �̂ is converted to entropy. We
propose the following entropic entanglement measure

EL½�̂� ¼ SL½~�� �minðTr½~��;Tr½~1� ~��ÞSL½�̂�; (8)

based on the fact that the entropy gained from the classical
correlations is less than the number of electrons or holes
times the entropy in �̂ [11]. Removing this upper bound
of the classical contribution simplifies the evaluation of
EL, but at the same time makes it less sensitive to detect
entanglement in mixed states.
The many-body eigenstate decomposition of �̂T from

the ED solver is shown in Table I. The auxiliary bath
orbitals are assigned a spin, but zero orbital angular mo-
mentum. In all the studied materials, the ground state

configurations maximize hŜ2i due to the strong Coulomb
interaction.

We start by looking at the entanglement in the hŜzi and
hL̂zi resolved components j�s

ms
ih�s

ms
j of �̂T . As seen in

Table I, both EG and EL increase in magnitude as jmsj
becomes smaller. This trend follows the number of pos-
sible ways to distribute the electrons according to their spin
[11]. The entanglement in the maximally spin-polarized
eigenstate j�s

si depends mainly on the complicated inter-
play between the Coulomb interaction and the crystal field
energies. The maximally spin-polarized ground state of
NiO is dominated by a Ni d8 high spin configuration ( "23
#03 where the subscript and the superscript stand for the

number of t2g and eg electrons respectively). The on-site

Coulomb interaction must preserve both hŜzi and hL̂zi
which implies that it can not couple this state to any other
state. The Coulomb interaction is therefore effectively
reduced to a Hartree-Fock term, which makes the eigen-
state j�s

si separable. The eigenstates at 80 meV have
mainly "23#12 character. Here the Coulomb interaction is

allowed to transform these states to "23#21 through pair hop-

ping. Nevertheless, when the maximally spin-polarized
states are combined into the density matrix �̂T

s the entan-
glement in the states cancels out, giving EG½�̂T

s � ¼ 0:00.
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The ground state of CoO has mainly a Co "23#02 configu-
ration that couples to "23#11 through the pair hopping induced
by the Coulomb interaction. The pair hopping gives rise to
a strong entanglement in j�s

si, and in contrast to NiO, the
entanglement is still present in �̂T

s , giving EG½�̂T
s � ¼ 0:02.

The ground state of FeO has primarily a Fe "23#01 configu-
ration. The Coulomb interaction is again reduced to a
Hartree-Fock term, except when the bath introduces an
extra electron in the TM-3d orbitals. As a result the
strength of the pair hopping becomes very small, and it
gives rise only to a very weak entanglement with
EG½j�s

sih�s
sj� ¼ 0:003 and EL½j�s

sih�s
sj� ¼ 0:012.

The MnO ground state is dominated by the Mn "23#00
configuration. Even when one extra electron is introduced
from the bath, the Coulomb interaction cannot induce any
pair hopping, which makes �̂T

s fully separable.
The Coulomb interaction gives an additional contribu-

tion to the entanglement when two electrons are transferred
from the bath to the TM-3d orbitals due to the quadratic
increase in repulsion energy. However, for TMOs this
contribution is of the order of 10�4 for the geometric
measure, i.e., too small to be seen in Table I.

Let us now consider the entanglement in the thermal PM
ground state �̂T . For NiO, FeO, and MnO the EG½�̂T

s � term
in Eq. (7) is zero, and only the hŜ2i-dependent part con-
tributes to the entanglement. A single Slater determinant
method can therefore in principle obtain the maximally
spin-polarized states j�s

i;si, and then reconstruct the

ground states through Eq. (5). However, such an approach
would not be adequate for CoO, as EG½�̂T

s � is nonzero in
this case.

The hŜ2i-contribution causes EG½�̂T� to increase mono-
tonically from NiO toMnO. A similar trend can in fact also
be seen in the relative entropy between the locally pro-
jected [11] thermally mixed density operators in LDA and
LDAþ DMFT [20]. However, due to a strong reduction of
the large number of available many-body states in the LDA
solution to only a few in the LDAþ DMFT solution, the
size of the relative entropy reflects mainly the different
degree of classical correlation in the two calculations.

A similar trend in the relative entropy is in fact obtained
even when the LDAþ DMFT ground state is replaced by
the separable ground state of a corresponding Hartree-
Fock-like LDAþU simulation.
The proposed EL measure was not able to resolve the

entanglement in the PM phase, as shown by the negative
values of EL½�̂T� in Table I. Further refinement of
the subtraction of the classical contribution is needed,
i.e., by explicitly including the number of orbitals in the
procedure [11].
Finally, we note that the PM results can be extrapolated

to the type-II antiferromagnetic phase at zero Kelvin, by
reducing the thermal ground state to the zero energy eigen-
state with the largest magnetic moment. For NiO, FeO, and
MnO, these eigenstates are separable, which again makes
them describable within theories working with a single
Slater determinant, at least in principle. In CoO this state
is rather entangled, with a fidelity entanglement of 0.12,
which once more puts an upper bound on the accuracy of
the single Slater determinant methods for this material.
Nevertheless, even though the extrapolated antiferromag-
netic ground states of NiO, FeO, and MnO are separable
their excited states are in general entangled. Their excita-
tion spectra can therefore not be captured with the single
Slater determinant band picture.
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