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Scaling laws for the transport and heating of trace heavy ions in low-frequency magnetized plasma

turbulence are derived and compared with direct numerical simulations. The predicted dependences of

turbulent fluxes and heating on ion charge and mass number are found to agree with numerical results for

both stationary and differentially rotating plasmas. Heavy ion momentum transport is found to increase

with mass, and heavy ions are found to be preferentially heated, implying a mass-dependent ion

temperature for very weakly collisional plasmas and for partially ionized heavy ions in strongly rotating

plasmas.

DOI: 10.1103/PhysRevLett.109.185003 PACS numbers: 52.35.Ra, 52.25.Kn, 52.25.Vy, 52.30.Gz

Introduction.—Heavy ions are present in hot magnetized
plasmas both in laboratory experiments and in nature.
These heavy ions are often trace; i.e., their densities are
small enough that they only have a small direct effect
on the bulk plasma dynamics. Nonetheless, trace heavy
ions are important in numerous contexts: main ion proper-
ties are often inferred from heavy ion measurements be-
cause heavy ions radiate more readily [1], accumulation
of heavy ions leads to dilution and increased radiative
energy losses in magnetic confinement fusion [2,3], and
temperature measurements of minority ions in space and
astrophysical plasmas indicate the existence of a novel
heating mechanism [4–6].

Considerable effort has gone into understanding the
particle transport of trace heavy ions, or impurities, in
the context of magnetized toroidal plasmas for fusion. In
particular, the scaling with charge number Z and mass
number A of the impurity particle flux were predicted
with a quasilinear fluid model and found to be in relatively
good agreement with numerical and experimental results
[7,8]. However, little to no work has been done on impurity
momentum and energy fluxes or for turbulent heating of
impurities. The latter may play a role not only in fusion
plasmas but also in the context of astrophysical plasmas,
where the temperature of minority ions has been observed
to increase with increasing ion mass [4–6]. Cyclotron
heating [9] and stochastic heating via large-amplitude
fluctuations [10] have been proposed as possible explan-
ations for this mass dependence. The turbulent heating
mechanism described here provides an alternative expla-
nation for the mass dependence of the minority ion
temperature that is present even for low-frequency, low-
amplitude fluctuations.

In this Letter, we use local, nonlinear, �f gyrokinetic
theory [11–13] to provide scaling predictions for trace
heavy ion particle, momentum, and energy fluxes as well
as turbulent heating in hot magnetized plasmas. This

approach has proven successful in determining scalings
of temperature-gradient-driven turbulence in tokamaks
[14]. We consider an inhomogeneous, axisymmetric
plasma rotating toroidally at angular frequency !� im-

mersed in a curved inhomogeneous magnetic field. To
simplify our analysis, we restrict our attention to a region
of plasma with rotation speed well below the ion sound
speed but with a strong rotation gradient. We also consider
only moderate values of � ¼ 8�p=B2 & 1, where p is the
mean plasma pressure and B is the mean magnetic field
magnitude. This is directly applicable to toroidal confine-
ment experiments in magnetic confinement fusion, but the
scaling laws we obtain are general: they do not change for a
stationary, homogeneous plasma slab and therefore also
pertain to various space and astrophysical plasmas.
Gyrokinetic turbulence.—The �f gyrokinetic theory is

obtained by performing an asymptotic expansion in the
small ratio of the Larmor radius, �, to system size, L, and
averaging over the fast Larmor motion of particles. It is
valid for low-amplitude turbulence with sub-Larmor fre-
quencies and spatial scales comparable to � and L in the
directions across and along the mean magnetic field, re-
spectively. Initially developed for magnetic confinement
fusion plasmas, �f gyrokinetics can also be applied to
small-scale turbulence in the solar wind, the solar corona,
accretion disks, and galaxy clusters [15,16].
We use (R, �, ") as our coordinate system, where R is

the position of the center of a particle’s Larmor orbit, " ¼
mv2=2 is its kinetic energy, and � ¼ mv2

?=2B is its

magnetic moment, with m its mass and v its speed. The

subscripts ? and k are used to denote the components

perpendicular and parallel to the mean magnetic field,

respectively, with the magnetic field magnitude given by

B. With this choice of coordinates, the electromagnetic

gyrokinetic equation governing the evolution of the fluc-

tuating piece of the distribution function �fs is
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where gs ¼ �fs þ ZseFM;sð�� h�isÞ=Ts, h�is is an

average over Larmor angle at fixed Rs, h�is ¼
h�� vk�Ak=cþ

R�s

0 d�0
s�Bk=Zseis, � is the fluctuating

electrostatic potential, �Ak and �Bk are the parallel com-

ponents of the fluctuating magnetic vector potential and
magnetic field, respectively, Zs is the charge number, e is
the proton charge, c is the speed of light, Ts is the mean
temperature, FM;s is a stationary Maxwellian distribution

of velocities in the frame rotating with velocity u ¼
R2!�r�, � is the toroidal angle, R is the plasma major

radius, D=Dt ¼ @=@tþ u � r, _Rs ¼ vk þ vM;s þ hv�is,
with vM;s ¼ b=�s � ðv2

kb � rbþ v2
?rB=2BÞ the drift ve-

locity due to a curved inhomogeneous mean magnetic field
and hv�is ¼ cb� rh�is=B the drift due to the fluctuating

fields, b the unit vector along the mean magnetic field,
�s ¼ ZseB=msc, and C descriptive of two-particle
Coulomb interactions. Plasma species is indicated by the
subscript s, which we henceforth drop where possible.

Note that the fields �, �Ak, and �Bk are independent of
Larmor angle at fixed particle position r but not at fixed
R ¼ rþ v? � b=�. Thus, care must be taken to specify
which spatial coordinate is held fixed for velocity integra-
tion. The � integral contained in h�i is performed at fixed
R, but all other velocity integrals in this Letter are per-
formed at fixed r.

By definition, the trace ions considered here do not
contribute to the fields. They are instead determined solely
by the electron and main ion dynamics through the low-
frequency Maxwell equations, supplemented by the quasi-
neutrality constraint,

0 ¼ X
s

Zs

Z
d3v�fs; (2)

r2
?�Ak ¼ � 4�

c

X
s

Zse
Z

d3vvk�fs; (3)

r?�Bk ¼ 4�

c

X
s

Zse
Z

d3vðb� v?Þ�fs; (4)

where � enters Eqs. (2)–(4) through the definition for �f
given below Eq. (1).

With g and f�; �Ak; �Bkg specified by Eqs. (1)–(4), one

can evaluate the turbulent heating and fluxes,

H ¼ Zeh�½ðvk þ vMÞ � rg� hC½�f�i�i� ��
@!�

@r
; (5)

� ¼ h�fhv�i � rri�; (6)

Q ¼ h"�fhv�i � rri�; (7)

� ¼ hmR2�fðv � r�Þhv�i � rri�
�

�
Ze

c
R2ðb � r�Þ�fðv? � rrÞ�Ak

�
�
; (8)

where r labels surfaces of constant mean pressure, hai� ¼R
d3r

R
d3va=

R
d3r is an integral over all velocity space

and over a volume of width w (� � w � L) encompass-
ing the mean magnetic field line of interest, H is the
heating, and �, �, and Q are the particle, toroidal angular
momentum, and energy fluxes, respectively. Note that the
momentum flux defined in Eq. (8) does not include each
species’ contribution to the Maxwell stress.

Expansion in A1=2.—To obtain scaling laws for the
turbulent fluxes and heating of trace heavy ions, we take
Z� A � 1, d!�=dr� vti=R

2, and expand g ¼ g0þ
g1 þ . . . in powers of A1=2. Here, A is the heavy ion to
proton mass ratio and vti is the main ion thermal speed. We
assume the ratio of the ion–ion collision time, �ii, to the

fluctuation time, �t, is sufficiently long (�ii=�t � Z2=A1=2)
that collisions may be neglected in our analysis. In what
follows, we keep Z and A dependences separate so that we

can consider the subsidiary expansion A1=2 � Z � A.
Because the heavy ions are trace, their space and time

scales are those of the bulk plasma turbulence. Thus, Z and
A only enter Eq. (1) through explicit factors of m, v� vt,
and Z as well as through g itself. In what follows, we
assume the ratio of the heavy ion to proton temperature

is much smaller than A, giving vt � A�1=2. The two
lowest-order equations in our expansion are thus

Dg0
Dt

þ hvEi � rg0 ¼ �Ze

T
FMvk � rh�i

�mvk
T

FMhvEi � Rr!�; (9)

Dg1
Dt

þ hvEi � rg1 þ vkðbþ b1Þ � rg0

¼ �ZeFM

T

�
vM � rh�i þ vk

c
b � rðvkh�AkiÞ

�

�mv2
k

T
FMhb1i � Rr!� � hvEi � rFM; (10)

where vE ¼ cb� r�=B and b1 ¼ b� r�Ak=B.
There are two possible scalings for both g0 and g1 due to

a competition between terms with different A and Z de-

pendences in Eqs. (9) and (10). In particular, g0 / Z=A1=2

or A1=2, with the two scalings coming from the parallel
electric field and rotation gradient source terms in Eq. (9),
respectively. Using these scalings in Eq. (10) gives g1 / 1
or Z=A. The number of such possible scalings is reduced
by considering the cases where either the parallel
electric field or rotation gradient source terms dominate
in Eq. (9), corresponding to jd!�=drj � ðZ=AÞvti=R

2 and
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jd!�=drj � ðZ=AÞvti=R
2. The A and Z scalings for g0

and g1 in these limits as well as for the general case are
summarized in Table I.

Flux and heating scalings.—If g0ðvkÞ is a solution to

Eq. (9), then �g0ð�vkÞ is also a solution. Thus,R1
�1 dvkg0f�; �Ak; �Bkg ¼ 0, where the overline denotes

a statistical average. As a result, g0 does not contribute
to the lowest-order heating or particle and heat fluxes,
Eqs. (5)–(7), whose integrands are otherwise even func-
tions of vk. Conversely, the lowest-order momentum

flux integrand has a component proportional to mvk, so
��mvtg0 / A1=2g0. Using our scalings for g0, we see
that � has competing terms scaling as Z and A.

Note that Eq. (10) has a vk symmetry opposite that of

Eq. (9): if g1ðvkÞ is a solution, then g1ð�vkÞ is also a

solution. For all higher-order equations, one can show
that the symmetry in vk alternates between that of

Eqs. (9) and (10). As a result, the only components of g
that contribute to the particle and heat fluxes and heating
are g1, g3, etc. Using Eqs. (6) and (7), we have f�; Qg � g1,
which in the general case has competing terms scaling as
Z=A and 1 (no Z or A dependence), respectively.

The first term in the heating expression, (5), is the Joule
heating and is scaled up by an explicit factor of Z (arising
from the current), while the second term is viscous heating.
At lowest order, the Joule heating term gives H /
ðZvkg0; Zg1Þ / ðZ; Z2=AÞ. The viscous heating is propor-

tional to � / ðZ; AÞ. H thus has competing terms scaling
as Z2=A, Z, and A. The scalings of the fluxes and heating
are summarized in Table I.

Minority ion temperature.—Integrating Eq. (5) by parts
in time and using Eq. (1), the heating can be expressed
as [13,17,18]

Hs ¼ �
�
Ts�fs
FM;s

C½�fs�
�
�

þ
�
Qs � 3

2
�s

�
@ lnTs

@r
þ �s

@ lnns
@r

: (11)

Our scalings indicate that Hs increases in magnitude with
A or Z but that �s and Qs do not. The first term in Eq. (11)
must thus dominate for A or Z large. This term, which we
identify as the collisional entropy generation, is positive
definite when summed over species. We argue that it is also

positive definite species by species for the low collision-
alities considered here.
The collision operator, C, consists of a test-particle

piece, which is a diffusion operator in velocity space, and
a field-particle piece, which is an integral operator [19].
Both contributions are inversely proportional to the colli-
sional mean free path and thus small, except at small scales
in the velocity space where large derivatives in the test-
particle operator compensate [16,20–22]. The test-particle
operator should thus dominate in weakly collisional plas-
mas, and its diffusive nature ensures that its contribution to
entropy generation is positive definite.
Consequently, trace heavy ions must be heated by tur-

bulence instead of cooled. For this heating process to sub-
side, the trace ion temperature must become large enough
to interfere with our large A expansion. This happens when
the heavy ion temperature exceeds the main ion tempera-
ture by a factor of A� Z. In this limit, the turbulent heating
H becomes comparable to the heat flux Q so that H is no
longer required to be positive definite. Our theory thus
predicts that heavy ions will be hotter than light ions by
a factor of A� Z but only if turbulent heating is greater
than collisional temperature equilibration.
The collisional temperature equilibration of the main

ions, i, and a trace heavy ion species, s, is Es �
2

ffiffiffi
2

p ðZ2
s=AsÞns�Ts=�ii, where �Ts ¼ Ts � Ti. From

Eq. (5), we estimate Hs � SnsTið�ni=niÞ2=�t, where S is
the scaling of H with A and Z given in Table I, and
we have assumed e�=Ti � �ni=ni � �ns=ns. Balancing
Hs and Es gives �Ts=Ti�SðA=Z2Þð�ii=�tÞð�ni=niÞ2�
SðA=Z2Þ�ii=�E, with �E the characteristic time scale over
which the equilibrium density and temperature vary.
Numerical results.—To test our predictions for the scal-

ings of turbulent transport and heating, we employ the
local �f gyrokinetic code GS2 [23]. We consider an axi-
symmetric system with sheared magnetic field lines map-
ping out nested toroidal surfaces with circular cross
sections (the Cyclone base case [24], parametrized with
the Miller local equilibrium model [25]). Each simulation
is electrostatic and includes kinetic electrons as well as
kinetic main and trace heavy ions with a wide range of Z
and A values. The turbulence is driven by gradients in the
mean ion and electron densities and temperatures, with
R0 ðd lnn=drÞ ¼ 2:2 for the electrons and main ions,
R0 ðd lnT=drÞ ¼ 6:9 for all species, and R0 the major
radius at the center of the constant pressure surface. The
collision frequency is chosen small, ��1

ii ða=vt;iÞ ¼ 0:001,
so that heavy ion collisions do not affect our scalings.
Two sets of simulations were carried out: one with a

stationary plasma (d!�=dr ¼ 0) and one with a differ-

entially rotating plasma (d!�=dr ¼ 4:67vti=R
2). The

simulation results are shown in Figs. 1–4. Data points for
fluxes and heating at various Z and A values are plotted as
solid circles and fit using a least-squares analysis with the
predicted lowest-order Z and A dependences, as well as the

TABLE I. Scalings, S, for turbulent fluxes and heating.�����d!�

dr

������ Z
A

vti

R2

�����d!�

dr

������ Z
A

vti

R2

�����d!�

dr

������ Z
A

vti

R2

g0 A1=2 or Z=A1=2 Z=A1=2 A1=2

g1 1 or Z=A 1 or Z=A 1

� 1 or Z=A 1 or Z=A 1

Q 1 or Z=A 1 or Z=A 1

� A or Z Z A
H Z2=A, A, or Z Z2=A A or Z
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first-order correction. In each case, the predicted scalings
fit the data well. Note that the momentum flux for
d!�=dr ¼ 0 is zero for all species due to a fundamental

symmetry of the �f gyrokinetic equation [26].
Discussion.—We now discuss the implications of the

trace heavy ion scalings derived in this Letter. First, the
preferential heating of heavy ions should lead to large
temperature disparities between different ion species in
nearly collisionless plasmas. In many space and astrophys-
ical plasmas, turbulent heating dominates over collisional
equilibration because collisions are rare (�t=�ii �
�n2i =n

2
i ), and preferential heating of heavy ions is indeed

observed [4,5]. However, for such low collisionalities the
equilibrium can deviate strongly from the isotropic
Maxwellian assumed in our analysis, which cannot con-
sequently address the large T?=Tk values observed in

coronal holes and the fast solar wind [6].
Using typical parameters for current fusion experiments

(n� 3� 1019 m�3, T � 5 keV, and �E � 0:1 s) [27], we

estimate turbulent heating to produce the impurity–ion
temperature difference �Ts=Ti � 0:1SðA=Z2Þ. For rotating
plasmas with S� A, our results indicate that the tempera-
ture of fully ionized impurities could differ from the main
ions by several tens of percent; heavy ions such as tungsten
will be only partially ionized at fusion temperatures, pos-
sibly leading to order unity temperature differences [28].
The increased densities and global confinement times ex-
pected for future fusion devices should reduce the average
temperature difference to �Ts=Ti � 0:01SðA=Z2Þ, though
this ratio may be larger in localized regions of the plasma.
Because the momentum transport of heavy ions is en-

hanced by A, heavy ions could significantly alter plasma
momentum transport for densities as small as ni=A. At this
density level impurities cannot be modeled as a trace
species, but the trace scalings presented here suggest that

FIG. 3. Normalized toroidal angular momentum flux,
ð�s=minsLv

2
tiÞðL=�iÞ2, vs charge number, Z, and mass number,

A, for cases with and without differential rotation, !�. The

dashed lines are least-squares fits using our scaling predictions,
given by 0 and �1:7A� 5:1 for the left and right plots, respec-
tively. The fact that � ¼ 0 for the case with d!�=dr ¼ 0

is a consequence of a symmetry property of the gyrokinetic
equation [26].

FIG. 4. Normalized heating, HsðL=nsTivtiÞðL=�iÞ2, vs charge
number, Z, and mass number, A, for cases with and without
differential rotation, !�. The dashed lines are least-squares fits

using our scaling predictions, given by 1:1Z2=A� 1:8 and
1:1Aþ 5:0 for the left and right plots, respectively.

FIG. 2. Normalized heat flux, ðQs=nsTivtiÞðL=�iÞ2, vs mass
number, A, for cases with and without differential rotation, !�.

The dashed line is a least-squares fit using our scaling predic-
tions, given by 2:0þ 15=A and 3:7� 3:7=A for the left and right
plots, respectively.

FIG. 1. Normalized particle flux, ð�s=nsvtiÞðL=�iÞ2, vs mass
number, A, for cases with and without differential rotation, !�.

The dashed line is a least-squares fit using our scaling predic-
tions, given by �0:7þ 2:3=A and 0:4� 1:6=x for the left and
right plots, respectively.
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nontrace impurities may play an important role in deter-
mining bulk plasma rotation.
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