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We predict the splitting of a high-order optical vortex into a constellation of unit vortices, upon total

internal reflection of the carrier beam, and analyze the splitting. The reflected vortex constellation

generalizes, in a local sense, the familiar longitudinal Goos-Hänchen and transverse Imbert-Fedorov

shifts of the centroid of a reflected optical beam. The centroid shift is related to the center of the

constellation, whose geometry otherwise depends on higher-order terms in an expansion of the reflection

matrix. We derive an approximation of the amplitude around the constellation as a complex analytic

polynomial, whose roots are the vortices. Increasing the order of the initial vortex gives an Appell

sequence of complex polynomials, which we explain by an analogy with the theory of optical aberration.
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Understanding and manipulating the spatial structure of
light beams is a fundamental theme of modern optics.
Beyond the simple structure of plane waves, beams with
inhomogeneous complex amplitude can carry quantized
orbital angular momentum (OAM) [1], which has many
applications, including free-space classical and quantum
communication [2–4], superresolved microscopy [5] and
extrasolar planet detection [6,7].

Free space optical modes carrying quantized OAM have
optical vortices (phase singularities) on their axes [8,9]:

they have the amplitude structure rj‘j expði‘�Þ close to the
beam axis, for ‘ an integer. Around the axis, as the intensity
becomes zero, the phase gradient becomes infinitely large.
The core region close to the axis of such beams is therefore
exceptionally sensitive to any imperfections in the trans-
mission along the path of the beam. Any disruption to the
pure azimuthal phase structure around the axis of the beam
breaks the axial, strength-‘ vortex into a constellation of
j‘j unit strength zeros [10]. We call this effect topological
aberration, as the effect of aberration disrupts the topology
of the simple optical mode.

Here, we describe in detail the topological aberration
which an OAM-carrying beam experiences under dielectric
reflection by an oblique angle.Wewill see that the resulting
constellation of zeros from the original strength-‘ vortex
depends on an aberrationlike analysis of the complex re-
flection coefficient in Fourier space, which is sensitive to
terms up to order j‘j in its Taylor expansion. It is therefore
possible, using the spatial distribution of phase singular-
ities, to determine higher orders of the effective reflection-
induced aberration of the beam. Furthermore, this
phenomenon will affect any vortex beam reflected by a
mirror, prism or beam splitter. As measurement techniques
become more sophisticated, appreciation of this universal
azimuthal symmetry breaking will become increasingly
important. Although the fact that a high-order vortex breaks

apart upon perturbation has been long understood, our main
result here is a formula for an aberrated constellation of
vortices. This comes from a local approximation, treating
the neighbourhood of the aberrated vortex as a complex
analytic function, determined completely by the zeros.
Tracking the change of position of optical vortices on

reflection echoes the study of optical beam shifts, where
the centroid of a homogeneously polarized beam is shifted
by an amount proportional to the optical wavelength, either
in the plane of incidence (Goos-Hänchen shift [11]), trans-
verse to it (Imbert-Fedorov shift [12,13]), or some combi-
nation of the two. The net shift requires the initial
transverse polarization to be homogeneous, and that the
beam be narrow and axisymmetric in intensity, but is
otherwise independent of the original amplitude profile.
In recent years, there has been an explosion of interest in
various types of beam shift, including both fundamental
insight and possible applications [14].
It is simple to see the connection between beam shifts

and aberration: for total reflection in the plane of incidence
(p polarization) or perpendicular to it (s polarization), the
reflection coefficient [15] is a simple ‘‘tilt’’ [16] to first
order; as the reflection coefficient acts on direction, in
real space the reflected beam is translated. In partial re-
flection when the modulus of the reflection coefficients
vary, there are also angular shifts of the beam’s propagation
direction [17].
The notion of using the displacement of an on-axis zero to

study beam shifts goes back to Hans Wolter in 1949 [18],
who observed that the position of a zero is a precise marker
depending on local information, rather than the beam cen-
troid, which depends on the global distribution of intensity.
Our approach may be thought of as generalizing Wolter’s
approach to any incident polarization and vortex order, all
of which may be further extended to other aberrations of
vortex beams, including refraction.
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Optical vortices are objects of scalar optics, and hence
it is natural in our framework to consider a polarized
component of the reflected beam; beam shifts for polarized
components are analogous to quantum ‘‘weak values’’ of
the reflection operator [19], which have shifts in both real
and Fourier space. The spatial shift to the centroid of
vortex-carrying beams involves both ‘‘spatial’’ and
‘‘angular’’ parts of phase-flat beams [20–22]; we will see
that this general shift is simply the first term, analogous to
tilt, in an aberration expansion of the polarized compo-
nent’s reflection matrix. In our calculation, higher aberra-
tion orders of the reflection matrix are realized as
coefficients of a complex polynomial approximating the
low amplitude in the core of the reflected beam: the vortex
positions are related to these aberration terms by the fun-
damental theorem of algebra.

The basic beam geometry is demonstrated in Fig. 1,
choosing a natural coordinate system based on the con-
struct of a virtual reflected beam [23], which is obtained by

specular reflection of every plane wave in the incident
beam. The central propagation direction is (0, 0, 1), and
we will make much use of spherical angles about this
direction: azimuth � and polar angle �. Since reflection
flips the sign of ‘, the reflected beam is �ð�Þ expð�i‘�Þ,
with real �ð�Þ tightly centered around � ¼ 0, such that the
second moment �2 ¼

R
0 d�j�ð�Þj2�3 � 1 (where the ex-

tra � � sin� is the Jacobian in spherical polars). The upper
limit of this integral is larger than the width of the spec-
trum. In these coordinates, the normal to the incidence
plane has direction (� sin�0, 0, cos�0), so, for each com-
ponent of the spectrum labeled by �,�, the incidence angle
� is given by cos� ¼ cos� cos�0 � cos� sin� sin�0. This
angular dependence appears in the reflection coefficients
rsð�Þ and rpð�Þ [16], which are defined with respect to the

local plane of incidence for every plane wave within the
spectrum [see Fig. 1(d)]. The indices s and p thereby refer
to the directions orthogonal (s) and parallel (p) to the local
plane of incidence [see Fig. 1(e)] and the general reflection
matrix R ¼ rsPs � rpPp consists of the projectors Pj ¼
ej � ej, j ¼ s; p of the incident field onto the local es and

ep direction [see Fig. 1(e)] multiplied by the appropriate

reflection coefficient. R acts on an initial polarization E,
which for the central wave vector is a 2D constant Jones
vector with components Ex and Ey. This is the global

polarization of the incident field which we distinguish
from the local polarization in terms of s and p components.
Because of transversality, however, the other plane waves
in the spectrum have a small z component such that E ¼
ðEx; Ey;�ðEx cos�þ Ey sin�Þ tan�Þ. As we only consider

a polarized component of the beam, the reflected beam is
filtered by a constant polarization analyzer F with compo-
nents (Fx, Fy, 0). All of the physics of beam reflections can

be explained by a Taylor expansion about � ¼ 0 of the
scalar multiplication operator F�RE in Fourier space as
we briefly summarize in the following (also see Ref. [24]).
In the transverse plane the real-space scalar reflected

beam is given by

c ðrÞ ¼
Z
0
d�

Z �

��
d��ð�Þ�eik sin�r�ðcos�;sin�Þ�i‘�F�RE;

(1)

where r ¼ ðx; yÞ and k is the wave number of the incident
light. The formula for the beam shift follows from a first
order Taylor expansion of the reflection matrix term,

F�RE � �R½1þ �D � ðcos�; sin�Þ� � �Re�D�ðcos�;sin�Þ;

(2)

where D ¼ ðDx;DyÞ is a complex 2-vector with compo-

nents Dx ¼ ðF�
xExr

0
p � F�

yEyr
0
sÞ=ðF�

xExrp � F�
yEyrsÞ and

Dy¼ðF�
yExþF�

xEyÞcot�0ðrpþrsÞ=ðF�
xExrp�F�

yEyrsÞ.
When ‘ ¼ 0, the spatial shift is given by �ImD=k,

which adds to the (x, y)-dependent term in the exponent in

FIG. 1 (color online). Incident and reflected beam geometry.
(a) Schematic of the relation between the interface plane and our
coordinate frame, showing the incident, virtual and real reflected
beam. For each beam the cone depicts a section of constant �. (b)
Intensity profile of an incident Bessel beam. (c) Shifted intensity
profile of the real reflected beam for �0 ¼ 44� and n ¼ 2=3.
(d) Schematic of the beam coordinates. The local plane and
angle of incidence depend both on � and �. (e) Beam coordi-
nates for a ‘ ¼ �4 vortex beam (phase indicated by color wheel)
and local resolution into es and ep.
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(1) when identifying sin� with �. This is the well-known
Artmann formula for spatial beam shifts [25]. The angular
shift is the angular mean of the Fourier transform of c ,
which is given by�2ReD [23,26]. For ‘ � 0 the net vortex
beam shift Dcentroid is given by

kDcentroid ¼ �ImD� i‘�2ReD; (3)

where �2 is the second Pauli matrix [19,22]. The first term
here is the usual Artmann translation; the second term,
usually associated with the angular shift, comes from the
azimuthal complex amplitude structure of the vortex beam.

The shift to the intensity centroid of a vortex-carrying
beam is different from the shift of the vortex itself [21,27].
The translation �ImD affects the entire beam including a
vortex and the centroid. However, ReD, being associated
with a change in the profile of the beam, affects them
differently: for an asymmetric profile, a vortex, being an
absence of intensity, repels the intensity centroid, and it
follows from the more general argument below that the
shift of a vortex in a j‘j ¼ 1 beam Dvortex is

kDvortex ¼ �ImD	 i�2ReD; (4)

where 	 refers to ‘ _ 0.
When j‘j> 1, topology preserves the overall vortex

charge, but the symmetry is broken and typically there is
a constellation of j‘j unit-charge vortices in the reflected
beam, with separation comparable to the beam shift itself.
An example of a numerical calculation of the reflection of
an ‘ ¼ �4 Bessel beam [28], with several different inci-
dent and analyzer polarizations, is shown in Fig. 2. The
constellation is not simply a regular polygon or ‘‘row’’
[29], but a more complicated function of incident and
analyzer polarization, incidence angle �0 and refractive

index n. The centroid of the vortices, represented by the
white circle, is the same as the position of the single shifted
vortex Dvortex: the centroid of the j‘j vortex points is a
discrete, topological counterpart to the shift of the intensity
centroid, but without the ‘ weighting, anticipated in
Ref. [21].
To analyze these constellations we now derive an ana-

lytic approximation for the reflected vortex beam close to
the beam axis, as a complex polynomial in xþ iy or x� iy
depending on the sign of ‘ [29], by collecting all the terms
of the lowest order in � in the expansion of the reflection
matrix (2). Up to order j‘j, this can be written as

F�RE � �R

�
1þ �C1 þ 1

2
�2C2 þ � � � 1

j‘j!�
j‘jCj‘j

�
; (5)

where �R ¼ F�REj�¼0. The argument throughout assumes
�R � 0, so it does not hold in exceptional circumstances,
such as incident in-plane polarization at the Brewster
angle. The original beam shift follows from C1 ¼
D � ðcos�; sin�Þ, which contains only single powers of
sin� and cos� and depends on the first derivatives of the
reflection coefficients. The higher coefficients Cm contain
combinations of sinu�cosv� and rqj ¼ ðdq=d�qÞrjj�¼0 for

j ¼ s; p with uþ v ¼ m and q 
 u, v. Each Cm may thus
be written as a complex Fourier series

Cm ¼ cþmeim� þ c�me�im�

2m
þ � � � (6)

This expansion of the reflection matrix is analogous to an
aberration expansion in terms of complex Zernike modes
[30], withm giving the order of aberration: c	1 corresponds
to tilt, c	2 to astigmatism, etc.
The core of the reflected vortex beam can be found by

combining Eqs. (1) and (5); after integration over the
azimuthal �, each e	iq� contributes a Bessel function
J‘�q, which is Taylor approximated close to the axis.

The lowest order term in the beam is �j‘j, which comes
from each c	m for ‘ _ 0; all other terms have higher order
and therefore smaller contribution. The size of the mth
contribution, corresponding to c	m is

c	m�m

2mm!

Z �

��
d�eik�r cosð���Þ�ið‘�mÞ�

� �j‘jc	m2�ij‘j�m½2j‘jm!ðj‘j �mÞ!��1½kðx� iyÞ�j‘j�m:

(7)

substituting r expð�i�Þ ¼ x� iy.
On collecting common factors, the reflected field near

the axis for a given ‘ is proportional to

c / � j‘j � ij‘jc	1 � j‘j�1 � j‘j2 � j‘j
2

c	2 �
j‘j�2 þ . . .

þ ð�iÞj‘jc	j‘j; (8)

FIG. 2 (color online). (a) Plot comparing the constellation of
vortices obtained from the roots of the local expansion in (8)
with a numerical calculation of the phase of the field. The
incident field is a Bessel beam with ‘ ¼ �4 incident at �0 ¼
46� and a fixed opening angle of � ¼ 0:01. The incident polar-
ization E and the analyzer F are both oriented in the
x direction (TM/TM). � marks the origin and  the centroid
of the vortices. (b) Plot showing the variation of constellations
for 45� diagonal incident polarization and different analyzer
settings including linear in the x (TM) and y direction (TE),
right (RC), and left (LC) circular polarization, as well as 45� and
135� diagonal polarization.
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where we have used � ¼ kðx� iyÞwith ‘‘�’’ for ‘ > 0 and
‘‘þ’’ for ‘ < 0. Each root of this complex polynomial
corresponds to a vortex, and the constellation depends on
the roots of the polynomial with coefficients given by
ð�iÞnc	m times a binomial coefficient as in (8). For increas-
ing j‘j the polynomials in (8) form an Appell sequence
[31], with coefficients generated by the sequence c	m of
coefficients from the Zernike expansion of the reflection
matrix, for which there are many relations between the
roots and the coefficients [32]. The integral over � as in (1)
does not affect Eq. (8), since these terms have the same,
lowest-order contribution in �, and so the constellation is
independent of the spectrum and hence the radial profile
of the beam, as long as it is narrowly confined in Fourier
space.

In the complex plane, the arithmetic mean (centroid) of
the roots of a polynomial of the form (8) is given by ic	1
[32], which proves that the mean position of the vortices is
always given by ic	1 ¼ D � ði;	1Þ. The vortex centroid
shift is independent of ‘, and can be understood purely in
terms of the representation of the beam as a polynomial in
the complex (x� iy) plane.

The vortex constellation for j‘j> 1 is sensitive to terms
beyond the first-order shift. The second order term c	2 is
related to the complex astigmatism of F�RE, proportional
to e	2i�. When j‘j ¼ 2, Eq. (8) is a quadratic equation with
c	2 the ‘‘constant’’; ic	1 is the midpoint of the two roots,

and their separation from the midpoint is 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c	2 � ðc	1 Þ2

q
(where the complex argument represents the direction
and the overall 	 is independent of the sign of ‘).
Measurement of the two singularity positions would there-
fore provide the two complex numbers c	1 and c	2 , from the
first two orders of the Zernike expansion of the reflection
coefficient. The former contains zeroth and first derivatives
of the reflection coefficients via the complex shift vectorD
and the latter is given by c	2 ¼ ðF�

x; F
�
yÞ � c	2 � ðEx; EyÞ=

ðF�
xExrp � F�

yEyrsÞ, where the c	2 matrix is given by

c	2 ¼ ðrs þ rpÞcot2�0
1 	i

	isec2�0 �1

 !

þ 1

2
cot�0

�r0p 0

0 �r0s

 !

� iðr0s þ r0pÞ cot�0
0 1

1 0

 !
þ 1

2

r00p 0

0 �r00s

 !
: (9)

This complicated form of c	2 shows that for higher order
shift effects, a separation in terms of diffractive corrections
and optical spin-orbit interaction is no longer possible [14].

To give an estimate of the separation of two vortices we
note that for total internal reflection in a glass prism with
n ¼ 1:49 and for a typical wavelength of 0:623 �m, and
an incidence angle of �0 ¼ 45�, the distance between the
two vortices varies in the range of 1 �m to 4 �m depend-
ing on the choice of incident and analyzer polarization. For

the same parameters in partial reflection the range of
separation is smaller and varies between 0:4 �m and
1:2 �m. In both cases the separation is roughly twice the
spatial shift of the intensity centroid.
In Fig. 3 we illustrate how this ‘‘singularimetry’’ would

give increasing information as positive ‘ increases (a) and
as negative ‘ increases (b). As j‘j increases, the constella-
tions increase in complexity, but maintain common fea-
tures (such as their center), as their coefficients are
algebraically related in Eq. (8). These complex coefficients
are proportional to the c	m , which correspond to successive
azimuthal aberration terms (tilt, astigmatism, etc.). This is
shown in Figs. 3(c)–3(g), which illustrate how a fixed
reflection matrix term F�RE as a function of �, � (c) is
decomposed into aberration terms of increasing order. In
the sense of quantum weak values [33], we note that going
beyond j‘j ¼ 1 accesses weak information beyond the first
order.
Our argument extends beyond reflection, to any paraxial

vortex beam experiencing an aberrationlike multiplication
in Fourier space: rather than a single order ‘ on-axis
vortex, the beam will have a constellation of ‘ vortices
which can be represented by a polynomial with coefficients
dependent on the azimuthal terms. This effect of

FIG. 3 (color online). Vortex constellations for increasing
positive ‘ (a) and negative ‘ (b). (c) Contours in Fourier space
(conical beam geometry) of the real and imaginary part of F�RE
for �0 ¼ 46� and both F and E set to 45� diagonal polarization.
(d)–(g) Contour plots for of the real parts of the coefficients in
(8) multiplied by the appropriate Fourier factor expð�im�Þ for
comparison with ‘ < 0 in (b). (d) m ¼ 1, (e) m ¼ 2, (f) m ¼ 3,
(g) m ¼ 4. [Scaling identical to figure (c)]. The gradient over the
contours in (d) corresponds to the shift as indicated by the black
line between � and  in (b).
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topological aberration will affect any vortex beam under-
going oblique reflection or refraction in a real optical
system, suggesting a fundamental limitation on the purity
of quantized OAM modes in optical devices [34,35].
However, as the connection between vortex positions and
the aberrations is so algebraically direct, any singularimet-
ric device which measures the precise vortex distribution
has direct access to the beam shift and later terms, without
any further analysis of the overall beam.
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