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We perform a nonperturbative calculation of the �0 ! �� transition form factor and the associated

decay width using lattice QCD. The amplitude for a two-photon final state, which is not an eigenstate of

QCD, is extracted through a Euclidean time integral of the relevant three-point function. We utilize the all-

to-all quark propagator technique to carry out this integration as well as to include the disconnected quark

diagram contributions. The overlap fermion formulation is employed on the lattice to ensure exact chiral

symmetry on the lattice. After examining various sources of systematic effects, except for a possible

discretization effect, we obtain ��0!�� ¼ 7:83ð31Þð49Þ eV for the pion decay width, where the first error

is statistical and the second is our estimate of the systematic error.
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The neutral pion decay process provides a unique oppor-
tunity to test a fundamental symmetry property of the
gauge theory. A quantum effect due to a fermion loop
violates the axial-current conservation, and gives the
dominant contribution to the �0 ! �� decay rate. The
prediction from this Adler-Bell-Jackiw (ABJ) anomaly
[1,2] (or the chiral anomaly) is rather precise because
higher-loop diagrams do not contribute in the limit of
vanishing quark mass and external momenta [3] even under
the presence of strong interaction. On the other hand, a
recent experimental measurement of the neutral pion decay
width has reached the accuracy of 2.8% [4] and is aiming to
achieve 1.4% in the near future. At this level of accuracy,
the correction due to finite quark mass becomes relevant.
Phenomenologically, an enhancement of the decay width
of about 3–5% has been expected according to the sum rule
and chiral perturbation theory (�PT) approaches [5–8], in
which the main effect comes from a mixing of �0 with �
and �0 mesons. For a recent review, we refer the reader
to Ref. [9].

In this Letter we present a model-independent calcula-
tion of the �0 ! �� amplitude using the lattice quantum
chromodynamics including dynamical up, down, and
strange quarks. We use the overlap fermion formulation
[10], which preserves chiral symmetry at finite lattice
spacings. In this formulation, the chiral anomaly appears
through the Jacobian of chiral transformation; the Atiyah-
Singer index theorem is reproduced as far as the back-
ground gauge field is smooth enough [11]. On the other

hand, whether the chiral anomaly is correctly reproduced at
practically used lattice spacings (� 0:1 fm) is a nonpertur-
bative problem, one that we address in this work.
Compared to previous attempts [12,13], a new technique

is applied to treat the two-external-photon state, by utiliz-
ing the all-to-all quark propagator [14,15]. In the limit of
degenerate up and down quark masses, we obtain the decay
rate with a statistical error of 4% and a total error of 7%
after examining possible systematic effects.
The �0 ! �� decay rate at the leading order of QED

can be expressed as

��0�� ¼ ��2
em

3
�

4
F 2

�0��
ðm2

�; 0; 0Þ; (1)

where �e is the fine structure constant, m� is the neutral
pion mass, and F �0��ðm2

�; p
2
1; p

2
2Þ is the form factor of the

pion to two (virtual) photon transition with p1;2 the photon

momenta. In the chiral limit, the ABJ anomaly predicts

F ABJ
�0��

� F �0��ð0; 0; 0Þ ¼
1

4�2F0

; (2)

where F0 is the pion decay constant F� in the chiral limit.
We define a normalized form factor as Fðm2

�; p
2
1; p

2
2Þ �

ð4�2F�ÞF �0��ðm2
�; p

2
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2
2Þ. In the Minkowski space-time,

F �0��ðm2
�; p

2
1; p

2
2Þ is defined through the matrix element
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M��ðp1; p2Þ ¼ i
Z

d4xeip1xh�jTfj�ðxÞj�ð0Þgj�0ðqÞi
¼ "����p

�
1p

�
2F �0��ðm2

�; p
2
1; p

2
2Þ; (3)

where q is the �0 momentum satisfying the on-shell
condition q2 ¼ m2

�. The current j� ¼ P
fQf �qf��qf is

the hadronic component of the electromagnetic vector
current and the sum runs over all relevant quark
flavors: f ¼ u, d, s.Qf denotes the electromagnetic charge

of them: Qu ¼ þ2=3 and Qd;s ¼ �1=3. The factor

"����p
�
1p

�
2 is induced by the negative parity of �0.

By an analytic continuation of (3) from the Minkowski
to Euclidean space-time [16,17], one may write

M��ðp1; p2Þ ¼ lim
t1;2�t�!1

1
	�; ~q

2E�; ~q
e�E�; ~qðt2�t�Þ

�
Z

dt1e
!ðt1�t2ÞC��ðt1; t2; t�Þ;

C��ðt1; t2; t�Þ �
Z

d3 ~xe�i ~p1� ~x
Z

d3 ~zei ~q� ~z

� h�jTfj�ð ~x; t1Þj�ð~0; t2Þ�0ð~z; t�Þgj�i;
(4)

where t1, t2, and t� are Euclidean time slices.R
d3 ~zei ~q� ~z�0ð~z; t�Þ is an interpolating operator for the neu-

tral pion with the spatial momentum ~q. Its amplitude and
energy in the ground state are denoted by 	�; ~q and E�; ~q,

respectively. The four-momentum of the first photon
p1 ¼ ð!; ~p1Þ is chosen as input, while the momentum of
the second photon is given as p2 ¼ ðE�; ~q �!; ~q� ~p1Þ by
momentum conservation. Note that the analytical continu-
ation is valid only for p2

1;2 <M2
V , which sets the limit on

the value of !. (MV stands for the invariant mass of the
lowest energy state in the vector channel.) Since the two
photons cannot be on-shell simultaneously, we calculate
the form factor at the off-shell photon momenta and then
extrapolate to the on-shell limit.

To calculate thematrix element h�jj�j��0j�i in Eq. (4),
we use 2þ 1-flavor overlap fermion configurations gener-
ated by the JLQCD and TWQCD Collaborations [18,19] at
a single lattice spacing a ¼ 0:11 fm and two spatial lattice
sizes L=a ¼ 16 and 24. The time extent is T=a ¼ 48.
Although the main gauge ensembles have a fixed (global)
topological chargeQ ¼ 0, the deviation from the 
 vacuum
is understood as a finite volume effect of Oð1=L3TÞ [20].
We check the significance of this effect by comparing the
results with two different values Q ¼ 0; 1. We utilize
the all-to-all propagator to calculate the correlation func-
tion C��ðt1; t2; t�Þ at any time slices of t1, t2, and t�.

The electromagnetic current j� ¼ P
fQf �qf��qf is imple-

mented on the lattice as a local operator with a renormal-
ization factor calculated nonperturbatively in [21] to match
the lattice results with the continuum theory. The up and

down quarks are degenerate in mass.We use the bare values
amu;d ¼ 0:015, 0.025, 0.035, and 0.050, corresponding to

the pion mass m� ranging from 290 to 540 MeV. Our final
results are obtained by an extrapolation of the data to
the physical pion mass m�;phy. The strange quark mass is

fixed at ams ¼ 0:080, which is very close to the estimated
physical value.
From the large t1;2 � t� behavior of C��ðt1; t2; t�Þ, it is

possible to extract the �0 ground state. We define the
amplitude A� as

A�ð�Þ � lim
t�t�!1C��ðt1; t2; t�Þ=e�E�; ~qðt�t�Þ; (5)

with � ¼ t1 � t2 and t ¼ minft1; t2g, and obtain
M��ðp1; p2Þ by performing an intregation,

2E�; ~q

	�

�Z 1

0
d�e!�A�ð�Þþ

Z 0

�1
d�eð!�E�; ~qÞ�A�ð�Þ

�
: (6)

We use two momentum setups ~p1 ¼ 2�
L ð0; 0; 0Þ, ~q ¼

2�
L ð0; 0; 1Þ (setup 1) and ~p1 ¼ 2�

L ð0; 0; 1Þ, ~q ¼ 2�
L ð0; 0; 0Þ

(setup 2). The resulting amplitudes A�ð�Þ for these setups
are shown in Fig. 1. In order to qualitatively understand
the � dependence of the A�ð�Þ, we consider the vector-
meson-dominance (VMD) model F VMD

�0��
ðm2

�; p
2
1; p

2
2Þ ¼

cVGVðp2
1ÞGVðp2

2Þ, with GVðp2Þ ¼ M2
V=ðM2

V � p2Þ the
vector-meson propagator and cV a constant. The amplitude
AVMD
� ð�Þ, reconstructed from this model, is plotted by red

solid curves in Fig. 1. (The detailed expression for AVMD
� ð�Þ

will be given in a later publication [22]). We find that the
VMDmodel describes the lattice data at j�j=a ¼ 7, and we
can safely evaluate the contribution beyond j�j=a ¼ 13,
where the lattice data are truncated due to the finite
time extent T. At small j�j, the VMD model fails to
match the lattice data. This is because no information
about the vector-meson excited states is contained in
F VMD

�0��
ðm2

�; p
2
1; p

2
2Þ. Given the dominant role played by
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FIG. 1 (color online). The amplitude A�ð�Þ as a function of �
for momentum setup 1 (left) and setup 2 (right). The black
dashed (red solid) curves indicate the lattice (VMD) amplitudes.
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the lowest vector meson, we take its form as a basis to
analyze the functional form of F �0��ðm2

�; p
2
1; p

2
2Þ.

Namely, we use an expression

F �0��ðm2
�; p

2
1; p

2
2Þ

¼ cVGVðp2
1ÞGVðp2

2Þ þ
X
m

cm½ðp2
2ÞmGVðp2

1Þ

þ ðp2
1ÞmGVðp2

2Þ� þ
X
m;n

cm;nðp2
1Þmðp2

2Þn; (7)

which includes possible contributions from excited states
as a polynomial of p2

1;2. In the chiral and large volume limit

for which the two-pion threshold opens, the VMD model
would no longer give an adequate description of the data.
Such an effect could become significant for precision
better than a few percent, which is not within the scope
of this work.

By varying !, we obtain M��ðp1; p2Þ in a certain range

of p2
1 and p2

2. As shown in the left panel of Fig. 2, a pair
ðp2

1; p
2
2Þ ¼ ½!2 � ~p2

1; ðE�; ~q �!Þ2 � ð ~q� ~p1Þ2� forms a

continuous contour on the (p2
1, p2

2) plane for p2
1;2<

M2
V=2. Evaluating F �0��ðm2

�; p
2
1; p

2
2Þ along this contour,

we obtain the data plotted in the right panel of Fig. 2. We
perform the combined fit of these data to Eq. (7) with four
free parameters: cV , c0, c0;0, and c0;1 ¼ c1;0, truncating the
higher-order terms which turned out to be negligibly
small. The fitting curves are shown in the right panel of
Fig. 2. As expected, the single formula (7) describes the
data with different momentum setups. Combining the
resulting fit parameters, we obtain the normalized form
factors Fðm2

�; 0; 0Þ, which are plotted in the uppermost
panel of Fig. 3.

In the following, we analyze the details of systematic
effects. When calculating the integral in Eq. (6), we use the
summation instead of the integration. This causes a dis-
cretization effect, which vanishes in the continuum limit.
Putting AVMD

� ð�Þ into Eq. (6), we find that the fractional

difference between M��ðp1; p2Þ from the summation and

the integration is less than 5� 10�4. With the lattice data
that include the excited state contributions, we could
expect a larger error, �1� 10�3, which is estimated
from a difference between VMD and lattice data in
Fig. 1. We can therefore safely neglect this source of error
as it is well below 1%.
We use two lattice volumes and two topological-charge

sectors to check finite-size (FS) effects. Following
Ref. [20], we analyze the fixed-topology (FT) effect and
find it suppressed due to the kinematical structure of

"����p
�
1p

�
2 . By comparing the lattice results at different

topological-charge sectors, we do not observe statistically
significant FT effects. The leading FS effect in
C��ðt1; t2; t�Þ is the conventional one and known to behave
as e�m�L [23]. To reduce the contamination due to this
effect, we therefore use the data with m�L � 4 to perform
the chiral extrapolation. (Namely, we exclude the L=a ¼
16 data points at the lowest two pion masses.)
�PT shows that up to next-to-leading order (NLO)

the m� dependence of Fðm2
�; 0; 0Þ involves no chiral

logarithm [24,25]. We therefore simply fit Fðm2
�; 0; 0Þ by

a linear function in m2
�, and obtain Fð0; 0; 0Þ ¼ 1:016ð20Þ

and Fðm2
�;phy; 0; 0Þ ¼ 1:011ð19Þ. To check the higher-order

correction, we also perform a quadratic fit under the con-
straint from the ABJ anomaly: Fð0; 0; 0Þ ¼ 1. We do not
find any statistically significant difference due to the
higher-order term. The linear (quadratic) fit is shown by
the solid (dashed) line in the uppermost panel of Fig. 3.
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2
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function of p2
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V . Lattice data are obtained on a 243 � 48

lattice at amu;d ¼ 0:015.
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FIG. 3 (color online). Fðm2
�; 0; 0Þ, gV , gV��, F�, and FS

corrected Fðm2
�; 0; 0Þ as a function of m2

� from top to bottom
panels. In each panel, data with ðL=a;QÞ ¼ ð16; 0Þ, (24,0), and
(16,1) are plotted by the blue circles, red squares, and green
diamonds, respectively. The yellow stars indicate the Particle
Data Group (PDG) [27] or PrimEx Collaboration [4] experimen-
tal values, for reference. The solid (dashed) curves show the
result of the fit to the linear (quadratic) function. The data set
used in the fit is explained in the text.
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Next we consider the data with m�L < 4, which tend
to suffer from the FS effect. As shown in Fig. 3, at
m� � 290 MeV we find that Fðm2

�; 0; 0Þ calculated at the
L=a ¼ 16 lattice is 27% less than the one at L=a ¼ 24.
Although large, such FS effect is understandable. By
inserting the ground state into hj�j��0i, we can approxi-

mate this three-point correlation function with three had-
ronic matrix elements,

hj�j��0i ! h�jj�jV; "ihV; "jj�j�0ih�0j�0j�i:

The first matrix element is related to the electromagnetic
coupling gV as h�jj�jV; "i ¼ M2

VgV"�, the second is

proportional to the V�� coupling gV��, and the third is

related to F� by the partially-conserved–axial-vector-
current constraint (PCAC) relation. In our calculation, we
do not observe a significant FS effect in MV but find 8%,
7%, and 9% shifts in gV , gV��, and F�, respectively, from

L=a ¼ 16 to 24, as shown in Fig. 3. These FS effects may
accumulate in the three-point function. We estimate the FS
corrections RO � Oð1Þ=OðLÞ with O ¼ gV , gV��, and

F�. RgV and RgV�� are evaluated by adding a correction

term, e�m�L, into the linear fit form in the chiral extrapo-
lation of each quantity. With such corrections taken into
account, we confirm that their chiral limit is consistent with
experimental data. RF�

is calculated to NNLO by using

�PT [26]. Assuming that RFðm2
�;0;0Þ ¼ RgVRgV��RF�

, we

may correct Fðm2
�; 0; 0Þ by a factor of RFðm2

�;0;0Þ. As shown
in the lowest panel of Fig. 3, with FS correction Fðm2

�; 0; 0Þ
at L=a ¼ 16 agrees with those at L=a ¼ 24. Using the
corrected data to perform a linear extrapolation, we obtain
Fð0; 0; 0Þ ¼ 1:045ð35Þ and Fðm2

�;phy; 0; 0Þ ¼ 1:041ð32Þ.
The difference between the results from the two methods
is considered as a systematic error.

So far, our results are obtained neglecting the effect
of disconnected diagrams that may appear because the
electromagnetic current j� contains a flavor-singlet con-

tribution. Calculation of the disconnected diagram is com-
putationally demanding and statistically noisy. We solve
these problems by the use of the all-to-all propagator. The
full data, including both the connected and disconnected
contributions, are plotted in the upper (lower) panel of
Fig. 4 for the case without (with) the FS correction. We
find that, although not significant, there is a shift from the
connected data to the full ones. Since the accuracy of our
calculation reaches a few-percent level, the disconnected
effect is relevant. Using the full data, we repeat the analy-
sis. The linear fit of Fðm2

�; 0; 0Þ with m�L � 4 yields
Fð0; 0; 0Þ ¼ 1:009ð22Þ and Fðm2

�;phy; 0; 0Þ ¼ 1:005ð20Þ.
The fit with FS corrected Fðm2

�; 0; 0Þ produces Fð0; 0; 0Þ ¼
1:007ð36Þ and Fðm2

�;phy; 0; 0Þ ¼ 1:006ð33Þ. Including the

disconnected contributions, the normalized form factor
in the chiral limit and at the physical pion mass shifts by
1–4%. This is comparable to the statistical error.

Using the full data, we quote our results for Fðm2
�; 0; 0Þ

and ��0�� in the isospin symmetric limit as

Fð0; 0; 0Þ ¼ 1:009ð22Þð29Þ;
Fðm2

�;phy; 0; 0Þ ¼ 1:005ð20Þð30Þ;
��0�� ¼ 7:83ð31Þð49Þ eV;

(8)

where the systematic errors originate from the difference of
the results by using two methods of treating the FS effect.
(The difference appearing in the full data is small. To be
conservative, we use the connected data to estimate such
systematic error.) Our results reproduce the predication of
the ABJ anomaly Fð0; 0; 0Þ ¼ 1 and agree with the PrimEx
Collaboration measurement ��0�� ¼ 7:82ð22Þ eV [4]. For

future improvements, isospin breaking effects due to the
light quark mass difference need to be included.
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