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In a three-dimensional Fermi liquid, quasiparticles near the Fermi surface may possess a Berry

curvature. We show that if the Berry curvature has a nonvanishing flux through the Fermi surface, the

particle number associated with this Fermi surface has a triangle anomaly in external electromagnetic

fields. We show how Landau’s Fermi liquid theory should be modified to take into account the Berry

curvature. We show that the ‘‘chiral magnetic effect’’ also emerges from the Berry curvature flux.

DOI: 10.1103/PhysRevLett.109.181602 PACS numbers: 11.30.Rd, 03.65.Vf, 72.10.Bg

Introduction.—Recently there has been a lot of interest
in the effect of the Berry phase and Berry curvature on the
physics of the electron Fermi liquid. The standard theory of
Fermi liquids, developed by Landau [1], assumes that the
low-energy degrees of freedom in a Fermi liquid are the
fermion quasiparticles, whose distribution function in
phase space satisfies a kinetic equation. In many cases
the semiclassical motion of a wave packet of electrons in
a crystal should include an extra term due to the Berry
phase, expressible in terms of the electronic Bloch wave
functions [2]. Such a term should alter the standard kinetics
of Fermi liquids (see also below); including this term leads
to an interpretation of the anomalous Hall conductivity in
terms of Fermi surface properties [3].

In this Letter we show the connection between the Berry
curvature on the Fermi surface and triangle anomalies. Let
us first notice that the total flux of Berry curvature through
a given Fermi surface does not need to vanish, but can be a
multiple of the flux quantum. One possible case is doped
Weyl semimetals [4–6], but the discussion does not depend
on the origin of the Berry curvature flux. We will show that
if there are k quanta of Berry curvature flux through a given
Fermi surface, then the number of particles associated with
this Fermi surface (which is proportional to its volume) is
not conserved in the presence of the external electromag-
netic field,

@n

@t
þ r � j ¼ k

4�2
E �B: (1)

Charge conservation is ensured by the vanishing of the sum
of k’s of all Fermi surfaces.

Equation (1) is exactly the equation of triangle anoma-
lies in relativistic quantum field theory [7,8]. It is therefore
expected to hold for a Fermi gas of relativistic fermions at
finite density. Indeed, the Berry curvature of a relativistic
fermion has the form of the field of a magnetic monopole in
momentum space, and k ¼ �1 for right- (left-)handed
fermions. The statement (1) goes further by tying anoma-
lies with Fermi surface properties only. In this way, we
demonstrate that axial anomalies are properties of Fermi
liquids with Berry curvature flux, even when the original

particles interact strongly. The only assumption is that low-
energy degrees of freedom are fermions that are described
by Landau’s Fermi liquid theory; the extension to, e.g., the
superfluid A phase of 3He [9] is deferred to a future ques-
tion, where Nambu-Goldstone bosons associated with the
spontaneous breaking of U(1) particle number must also be
taken into account. (In such a Weyl superfluid, the relation
between the topology of a Fermi surface and anomalies
was studied theoretically in a different way and verified
experimentally; see Ref. [9] and references therein.)
As is evident from our arguments, triangle anomalies in

a Fermi liquid have a ‘‘kinematic’’ origin, independent of
the details of the Hamiltonian. Namely, we will show that
Berry curvature modifies the commutation relation of the
particle number density operator, and that this commutator
is related to the anomalous Hall effect and the triangle
anomalies for the fermion numbers near one Fermi surface.
Hamiltonian formulation of Landau’s Fermi liquid the-

ory.—The fundamental equation of Landau’s Fermi liquid
theory is a kinetic equation governing the time evolution of
the occupation number of quasiparticles npðxÞ,

@npðxÞ
@t

þ @�p
@p

� @np
@x

� @�p
@x

� @np
@p

¼ 0; (2)

where �p ¼ �0p þ ��p, �0p is the energy of a single

quasiparticle excitation with energy p, and ��p is the

modification of its energy due to interactions with other
quasiparticles,

��p ¼
Z dq

ð2�Þ3 fðp;qÞ�nqðyÞ; (3)

�nqðyÞ ¼ nqðyÞ � n0q is the deviation from the ground state

distribution function and fðp;qÞ are Landau’s parameter.
Above we have neglected the collision term.
For the purpose of generalizing Landau’s Fermi liquid

theory to systems with Berry curvature, we reformulate the
kinetic equation as the evolution equation of a Hamiltonian
system. In this formulation, the kinetic equation has the
form

@tnpðxÞ ¼ i½H; npðxÞ�; (4)
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where the Hamiltonian H is the conserved energy,

H ¼
Z dpdx

ð2�Þ3 �
0
p�np þ 1

2

Z dpdqdx

ð2�Þ6 fðp;qÞ�np�nq;
(5)

and the commutator is postulated as

½npðxÞ; nqðyÞ� ¼ �ið2�Þ3 @

@p
�ðp� qÞ � @

@x
�ðx� yÞ

� ½npðyÞ � nqðxÞ�: (6)

It is straightforward to verify that Eqs. (4)–(6) imply Eq. (2).
The commutation relation (6) is remarkable in the fol-

lowing respect: assume we have two operators, Â and B̂,
linear in occupation numbers,

Â ¼
Z dpdx

ð2�Þ3 Aðp;xÞnpðxÞ;

B̂ ¼
Z dpdx

ð2�Þ3 Bðp;xÞnpðxÞ;
(7)

then its commutator will be

½Â; B̂� ¼ �i
Z dpdx

ð2�Þ3 fA; BgnpðxÞ; (8)

where fA; Bg is the classical Poisson bracket

fA; Bgðp;xÞ ¼ @A

@p
� @B
@x

� @A

@x
� @B
@p

: (9)

The presence of the Berry curvature, as we shall see,
changes the classical Poisson bracket and leads to a modi-
fication of Landau’s Fermi liquid theory.

Berry curvature and Poisson brackets.—Before tackling
the many-body physics of Fermi liquids, let us consider a
single quasiparticle in a theory with Berry curvature of the
Fermi surface. Such a quasiparticle is described by the
action [10,11]

S ¼
Z

dt½pi _xi þ AiðxÞ _xi �AiðpÞ _pi �Hðp; xÞ�; (10)

where Hðp; xÞ is the Hamiltonian whose form is not im-
portant for us right now, Ai is the electromagnetic vector
potential, and AiðpÞ is a fictitious vector potential in
momentum space. Combining p and x into one set of
variables �a, a ¼ 1; . . . ; 6, the action can be written as

S ¼
Z

dt½�!að�Þ _�a �Hð�Þ�: (11)

The equations of motion that follow from this action are

!ab
_�b ¼ �@aH; (12)

where !ab ¼ @a!b � @b!a and @a � @=@�a. We can re-
interpret this equation as

_� a ¼ fH;�ag ¼ �f�a; �bg@bH; (13)

where the Poisson bracket is defined as

f�a; �bg ¼ ð!�1Þab � !ab; (14)

where!�1 is the matrix inverse of!ab. For the action (10),
the Poisson brackets are [11]

fpi; pjg ¼ � �ijkBk

1þB �� ; (15a)

fxi; xjg ¼
�ijk�k

1þ B �� ; (15b)

fpi; xjg ¼
�ij þ�iBj

1þ B �� ; (15c)

where Bi ¼ �ijk@Ak=@xj, �i ¼ �ijk@Ak=@pj.

The invariant phase space is (here ! � det!ab) [10]

d� ¼ ffiffiffiffi
!

p
d� ¼ ð1þ B ��Þ dpdxð2�Þ3 : (16)

It is now clear how to incorporate Berry curvature into
Landau’s Fermi liquid theory. One makes a phase-space
modification to the Hamiltonian (5), keeps the evolution
Eq. (4) unchanged, but alters the commutator of npðxÞ to be
consistent with Eqs. (15). We shall now work out this
commutator.

Let us assume that there are two operators Â and B̂
defined as

Â¼
Z
d�

ffiffiffiffi
!

p
Að�Þnð�Þ; B̂¼

Z
d�

ffiffiffiffi
!

p
Bð�Þnð�Þ: (17)

Then it seems natural to define the commutator between
nð�Þ so that

½Â; B̂� ¼ �i
Z

d�
ffiffiffiffi
!

p
!ab@aA@bBnð�Þ: (18)

This form, however, is deficient in one respect: it makes
use of nð�Þ in the whole Fermi volume, while we expect the
physics to be concentrated near the Fermi surface. We shall
therefore postulate another form for the commutator,

½Â; B̂� ¼ � i

2

Z
d�

ffiffiffiffi
!

p
!abðA@aB� B@aAÞ@bnð�Þ: (19)

If we integrate by part in this equation, using
@bð

ffiffiffiffi
!

p
!abÞ ¼ 0 (a consequence of the Bianchi identity),

we bring Eq. (19) into the form of (18). However, now the
commutator depends only on the physics near the Fermi
surface. Moreover, we may have problems defining the
integral in Eq. (18) when the Berry curvature is singular
inside the Fermi volume (as in the case when the Berry
curvature flux is nonzero), while Eq. (19) is completely
well defined in this case. We will take Eq. (19) as the
equation defining the commutators of the occupation num-
ber operator.
It is possible to write down explicitly the commutator

½npðxÞ; nqðyÞ�. We shall not do it here. Instead, we shall

notice that if A and B are not linear in nð�Þ, but are instead
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general functionals of nð�Þ, then the commutator between
them can still be computed explicitly,

½Â; B̂� ¼ � i

2

Z
d�

ffiffiffiffi
!

p
!ab

�
�Â

�nð�Þ@a
�B̂

�nð�Þ

� �B̂

�nð�Þ@a
�Â

�nð�Þ
�
@bnð�Þ: (20)

Equation (20) is particularly useful when Â is the
Hamiltonian, for which we know that �H=�npðxÞ¼�pðxÞ.

Commutator of density operator.—We now show that the
Berry curvature leads to an anomalous term in the equal-
time commutator of the density operator nðxÞ at two points.
Moreover, if the Berry curvature has a nonzero magnetic
flux through the Fermi sphere, then the commutator has a
contribution from the external magnetic field,

½nðxÞ; nðyÞ� ¼ �i

�
r� � þ k

4�2
B

�
� r�ðx� yÞ; (21)

where � is defined as

�iðxÞ ¼ �
Z dp

ð2�Þ3 pi�k

@npðxÞ
@pk

; (22)

and k is the monopole charge inside the Fermi surface,

k ¼ 1

2�

Z
dS ��: (23)

We note that both� and k involve only the physics near the
Fermi surface.

To derive Eq. (21), first we write the density operator as

nðyÞ ¼
Z dp

ð2�Þ3 ð1þB ��ÞnpðyÞ ¼
Z

d��ðx� yÞnpðxÞ:
(24)

The commutator of the density operator at two different
points is, according to Eq. (19),

½nðyÞ; nðzÞ� ¼ � i

2

Z
d��ðx� yÞ@i�ðx� zÞ

�
fxi; xjg

@np
@xj

þ fxi; pjg
@np
@pj

�
� ðy $ zÞ: (25)

The fxi; xjg term in the commutator is reduced to

� i@i�ðy � zÞ
Z dp

ð2�Þ3 �ijk�k

@np
@xj

¼ �iðr� �Þ � r�ðy � zÞ; (26)

where � is defined in Eq. (22). The fxi; pjg term in the

commutator can be rewritten as

iBi@i�ðy � zÞ
Z dp

ð2�Þ3 �j

@np
@pj

; (27)

and, by integration by part, taking into account @i�i ¼ 0
around the Fermi surface, np ¼ 1 deep inside the Fermi

surface and np ¼ 0 far outside the Fermi sphere, it becomes

� i
k

4�2
B � r�ðy � zÞ: (28)

Combining two contributions, we find Eq. (21).
From density-density commutator to anomalous non-

conservation of current.—The connection between the
anomalous density-density commutator [the term propor-
tional to B in Eq. (21)] and triangle anomalies is known in
the context of relativistic quantum field theory [12,13].
Here we derive this connection using the Hamiltonian
formalism and show how the anomalous Hall current and
the triangle anomaly can be traced to the two contributions
to the density-density commutator.
Let us first assume that our system is in a static magnetic

field, but the electric field is turned off. In this case, the
system is described by the Hamiltonian (5), and by com-
muting the Hamiltonian with the particle number operator
nðxÞ, the continuity equation can be derived,

_n ¼ i½H; n� ¼ �r � j; (29)

where the particle number current j is

j ¼
Z dp

ð2�Þ3
�
��p

@np
@p

�
�
� �@np

@p

�
�pB��p��@np

@x

�
:

(30)

Note that by integration by part, the first term in the
brackets in the right-hand side of Eq. (30) can be written
in the familiar form npv, where v ¼ @�p=@p. This would

be the only term in the current in the absence of Berry
curvature.
Now we turn on a static electric field by putting the

system in an external scalar potential �ðxÞ, E ¼ �r�.
The Hamiltonian is now

H0 ¼ H þ
Z

dx�ðxÞnðxÞ: (31)

The added term does not commute with n and changes the
time evolution of the latter,

@tnðxÞ ¼ i½H0; nðxÞ�
¼ �r � j�

�
r� � þ k

4�2
B

�
� r�ðxÞ: (32)

This equation can be rewritten as

@tnþ r � j0 ¼ k

4�2
E �B; (33)

where

j 0 ¼ jþ E� �: (34)

The second term in Eq. (34) is the usual anomalous Hall
current. On the other hand, Eq. (33) implies that the
particle number around the Fermi surface is not conserved
when both electric and magnetic fields are turned on. This
is the effect of triangle anomalies in quantum field theory.
For example, relativistic right-handed free fermions have
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k ¼ 1, and left-handed free fermions have k ¼ �1. Here
we show that this effect depends only on the monopole
charge of the Berry curvature on the Fermi surface and is
not modified by interactions. Since the total charge is
conserved, all different contributions to the current non-
conservation should sum up to zero.

Chiral magnetic effect.—Let us compute the current,
given by Eq. (30), in the thermal equilibrium state, where
quasiparticles have a Fermi-Dirac distribution function,

np ¼ fðxÞ ¼ 1

ex þ 1
; x ¼ �p ��

T
: (35)

There are three contributions to j corresponding to three
terms in the brackets in the right-hand side of Eq. (30). The
third term involves spatial derivatives and vanishes in the
ground state. We now show that the first term also vanishes
identically. For this end it is useful to introduce the function
gðxÞ ¼ R

x
�1 dyyf0ðyÞ, for which gð�1Þ ¼ gðþ1Þ ¼ 0.

Then

�
Z dp

ð2�Þ3 �p
@np
@p

¼�
Z dp

ð2�Þ3
�
�
@np
@p

þT
@

@p
gðxÞ

�
¼ 0:

(36)

Similarly, the second contribution can be written as

�B
Z dp

ð2�Þ3 �
�
�
@np
@p

þ T
@

@p
gðxÞ

�
; (37)

and the integrals can be evaluated as in Eq. (27). As the
result, we find

j ¼ k

4�2
�B: (38)

Let us assume for definiteness that there are two Fermi
surfaces with k ¼ 1 and k ¼ �1. If the two Fermi surfaces
have equal chemical potential, then the total current is equal
to 0. However, if the chemical potentials are unequal (which
can be achieved by turning on an E � B for a finite time),
then there will be a current equal to ð�þ ���ÞB=4�2 in
this quasiequilibrium state. This is the chiral magnetic
effect [14,15].

Conclusion.—The calculation above ties the anomalous
current nonconservation to a property of the Fermi surface
only (the Berry curvature) and hence can be applied to
Fermi liquids, even when the interaction between original
fermions is strong. This is done by using a kinetic equation
for quasiparticles; a more microscopic derivation of this
equation [16,17] is desirable.

It would be interesting to explore further physical con-
sequences of Berry curvature on Landau Fermi liquid
theory. Particularly interesting are the effects of Berry
curvature on the collective modes and on the response of
the Fermi liquids. It is also interesting to include the colli-
sion term into the kinetic equation and investigate the
hydrodynamic regime. In relativistically invariant theories,
the effects of triangle anomalies have been investigated,
both within hydrodynamics and by using gauge-gravity

duality [18–20], and there have been attempts to derive
hydrodynamics from kinetic theory [21]. The kinetic ap-
proach allows us to go beyond the hydrodynamic regime
and beyond systems with relativistic invariance. On the
other hand, some interesting phenomena associated with
anomalies in relativistic theories, like the Alfvén-type
modes propagating along the direction of themagnetic field
[22,23], may be directly investigated using the kinetic
equation in the condensed-matter context.
Finally, the understanding obtained here should allow

one to formulate the criteria of anomalies matching for
dense states matter, i.e., quark matter phases with Fermi
surfaces.
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