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We present an embedding of the three-dimensional relativistic Landau-Ginzburg model for condensed

matter systems in anN ¼ 6,UðNÞ �UðNÞ Chern-Simons-matter theory [the Aharony-Bergman-Jafferis-

Maldacena model] by consistently truncating the latter to an Abelian effective field theory encoding the

collective dynamics of OðNÞ of the OðN2Þ modes. In fact, depending on the vacuum expectation value on

one of the Aharony-Bergman-Jafferis-Maldacena scalars, a mass deformation parameter � and the Chern-

Simons level number k, our Abelianization prescription allows us to interpolate between the Abelian Higgs

model with its usual multivortex solutions and a �4 theory. We sketch a simple condensed matter model

that reproduces all the salient features of the Abelianization. In this context, the Abelianization can be

interpreted as giving a dimensional reduction from four dimensions.
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Introduction.—The gauge-gravity duality, as manifest in
the AdS/CFT correspondence [1] has evolved from its
humble origins in string theory into one of the most power-
ful tools in the arsenal of physicists studying nonperturba-
tive and strong-coupling phenomena in quantum field
theories today. The original and, arguably, most studied of
these applied string theory phenomena was the physics of
QCD. In particular, a lot of recent work has focused on the
quark-gluon plasma observed in heavy ion colliders such as
the Relativistic Heavy Ion Collider (RHIC) and the ALICE
experiment at CERN (see for example, Ref. [2] for a recent
review). More recently though, the ideas of holography
have found a new, lower-dimensional hunting ground in
condensed matter physics. The pp-wave or Berenstein-
Maldacena-Nastase limit of AdS/CFT selects operators
with large charge [3] in N ¼ 4 super Yang-Mills theory.
The physics of such large operators is, in a very concrete
sense, isomorphic to the physics of certain spin chains [4]; a
realization that has led, not only to an enormous develop-
ment in our understanding of integrability in string theory
but also served as a forerunner to many of the developments
in what has now become known as the anti–de Sitter con-
densed matter theory (AdS/CMT) correspondence.

In these cases however, the duality was heuristically
motivated by a relation between some system of branes
and a gravitational background, in some decoupling limit.
Later, it was realized that if physics in AdS is always
holographic, we can consider simple theories in AdS, that
should be related to some strongly coupled conformal field
theory on the boundary. Thus naturally AdS/CFT came to
be applied to condensedmatter systems, where one encoun-
ters strongly coupled conformal field theories that cannot be
dealt with in other ways (see for instance the reviews

Refs. [5,6] for an introduction and relevant references). In
all these cases, however, the argument is mostly one of
universality, that a variety of (large N) theories have some
small set of (Abelian) operators dual to some finite and
small number of fields in AdS, usually aUð1Þ gauge field, a
scalar and maybe some spinors, representing a (sometimes
consistent) truncation of some AdS/CFT pair. In other
words, either one truncates the number of operators of the
system, in which case it is not entirely clear (a) why one
should focus on a subset, or how one understands from the
point of view of a condensed matter system the focus on
the few operators of the largeN system, or (b) one thinks of
an Abelian condensed matter analog of the large N theory,
in which case it is not clear why we can use just a gravity
dual, as opposed to a full string theory. In either case, we
find the argument less than persuasive.
In this Letter, we will take some steps towards a better

understanding of AdS/CMT, by proposing a modification
of the above set-up. We consider instead a consistent
truncation of the three-dimensional Aharony-Bergman-
Jafferis-Maldacena (ABJM) theory (which has a known
gravity dual), a truncation that corresponds to the collective
dynamics ofOðNÞ fields out of theOðN2Þ of ABJM theory,
and gives an effective theory that is easily identified as the
relativistic Landau-Ginzburg model. We also sketch a sim-
ple CMTmodel that has the same qualitative features as the
ABJM Abelianization, allowing us to understand better in
what sense we can use the ABJM theory for condensed
matter systems. Here we present only the main ideas, leav-
ing the technical details to a longer paper [7].
As a point of clarity, we note that the idea of a consistent

truncation in string theory is not a new one, having been
featured before in two primary contexts. On the gravity side
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of the AdS/CFT correspondence, when one is interested in a
classical limit only, a consistent truncation means that we
can safely drop the nonzero modes, as these will only appear
in quantum loops. In supergravity compactifications, how-
ever, a consistent truncation for a dimensional reduction
means that we can drop all the nonzero (KK) modes from
the low energy quantum theory as well, provided that the
coupling to the nonzeromodes can bemade arbitrarily small,
or that the masses of the nonzeromodes are much larger than
the mass parameters of the low energy theory. Hence quan-
tum loops of these nonzero modes may be ignored. We will
argue below that it is this latter case that arises here. To
understand the collective dynamics that is crucial to our
argument, consider a large number, N, of branes in some
background. A classical solution that is obtained by turning

on fields in all theN branes will curve the background space
nontrivially corresponding, via AdS/CFT, to some finite
deformation of the dual theory. On the other hand, just
turning on fields on a single brane will produce a negligible
deformation that will not deform the background space nor
the dual. In our case it is the former situation that arises so
that in this sense, the collective dynamics of OðNÞ fields
really is different from the dynamics of a single field, and it is
this that allows for a dual gravitational interpretation.
ABJM model and its massive deformation.—The ABJM

model [8] is an N ¼ 6 supersymmetric UðNÞ �UðNÞ
Chern-Simons gauge theory at level (k,�k), with bifunda-
mental scalars CI and fermions c I, I ¼ 1; . . . ; 4 in the
fundamental of the SUð4ÞR symmetry group and gauge

fields for the two groups A� and Â�. Its action is given by

S ¼
Z

d3x

�
k

4�
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where the gauge covariant derivative is

D�C
I ¼ @�C

I þ iA�C
I � iCIÂ�: (2)

The action has an SUð4Þ �Uð1Þ R symmetry associated
with the N ¼ 6 supersymmetries. It admits a maximally
supersymmetric (i.e., preserving all N ¼ 6) massive de-
formation with mass parameter � [9,10], which breaks
the R symmetry down to SUð2Þ � SUð2Þ �Uð1ÞA �
Uð1ÞB � Z2 by splitting the scalars as

CI ¼ ðQ�; R�Þ; � ¼ 1; 2: (3)

The mass deformation changes the potential to

V ¼ TrðjM�j2 þ jN�j2Þ; (4)

where

M� ¼ �Q� þ 2�

k
ð2Q½�Qy
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	� þ R	Ry

	Q
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This mass-deformed Aharony-Bergman-Jafferis-
Maldacena theory has ground states of the fuzzy sphere
type given by [9,10]

R� ¼ cG�; Q� ¼ 0 and Qy
� ¼ cG�; R� ¼ 0;

(6)

where c �
ffiffiffiffiffi
�k
2�

q
and the matrices G�, � ¼ 1, 2, bifunda-

mental under UðNÞ �UðNÞ, satisfy (with no summation
on repeated indices)

G� ¼ G�Gy
	G

	 �G	Gy
	G

�: (7)

This ground state corresponds to a fuzzy two-sphere
[11,12]. An explicit solution for G� is given by

ðG1Þm;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m� 1

p

m;n; ðG2Þm;n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN �mÞ

p

mþ1;n

ðGy
1 Þm;n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m� 1

p

m;n; ðGy

2 Þm;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN � nÞ

p

nþ1;m:

(8)

We will now use these so-called Gomis-Rodriguez-
Gomez-van Raamsdonk-Verlinde matrices to posit an an-
satz that effectively Abelianizes the ABJM model while
retaining the large N limit.
Consistent Abelian truncation and condensed

matter model.—Consider then the following ansatz for
the Chern-Simons fields and the scalar matter in the
supermultiplet:
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A� ¼ að2Þ� G1Gy
1 þ að1Þ� G2Gy

2

Â� ¼ að2Þ� Gy
1G

1 þ að1Þ� Gy
2G

2

Q� ¼ ��G
�

R� ¼ ��G
�;

(9)

where, again, there is no summation over the repeated �;

að1Þ� and að2Þ� are real-valued vector fields and ��, �� are
complex-valued scalar fields. This provides a consistent
truncation of the ABJM action to

S ¼ �NðN � 1Þ
2

Z
d3x

�
k

4�
����ðað2Þ� fð1Þ�� þ að1Þ� fð2Þ��Þ

þ jD��ij2 þ jD��ij2 þUðj�ij; j�ijÞ
�
; (10)

where U � 2V=NðN � 1Þ is a rescaling of the potential

V ¼ 2�2

k2
NðN � 1Þ½ðj�1j2 þ j�1j2Þðj�2j2 � j�2j2 � c2Þ2

þ ðj�2j2 þ j�2j2Þðj�1j2 � j�1j2 � c2Þ2
þ 4j�1j2j�2j2ðj�1j2 þ j�2j2Þ
þ 4j�1j2j�2j2ðj�1j2 þ j�2j2Þ�; (11)

and where the, now Abelian, gauge covariant derivatives

are D��i ¼ ð@� � iaðiÞ� Þ�i and D��i ¼ ð@� � iaðiÞ� Þ�i.

Different choices of scalars turned on lead to different
consistent truncations we collect below:

�2 ¼ �2 ¼ 0: This leads to a model with two massive
complex scalars with no self-interactions. This is essen-
tially trivial and will not merit further attention.

�1 ¼ �2 ¼ 0: After a minor relabeling of �2 ! �2 this
choice produces

S¼�NðN�1Þ
2

Z
d3x

�
k

4�
����ðað2Þ� fð1Þ��það1Þ� fð2Þ��Þ

þjD��ij2þUðj�ijÞ
�
;

V¼2�2NðN�1Þ
k2

�
j�1j2ðj�2j2�c2Þ2þj�2j2ðj�1j2þc2Þ2

�

(12)

a model which has vortex solutions with �1 ¼ j�1jeiN1�

and �2 ¼ j�2jeiN2�, where � is the polar angle on the
plane, and j�1;2j go to zero at r ¼ 0 and r ¼ 1.

�1 ¼ �2 ¼ 0: If we also set �1 ¼ b ¼ const, and solve

for the (now auxiliary) gauge field að1Þ� we obtain the action

S¼�NðN� 1Þ
2

Z
d3x

�
k2

8�2jbj2 ðf
ð2Þ
��Þ2 þ jD��2j2 þV

�
;

(13)

where the potential is

V¼ 2�2

k2
NðN�1Þfjbj2j�2j4þj�2j2½ðjbj2�c2Þ2�2c2jbj2�

þc4jbj2g: (14)

This is the most interesting case. Indeed, we see that for

kbj2 � c2j> ffiffiffi
2

p jckbj, we obtain a regular �4 phase,

whereas for kbj2 � c2j< ffiffiffi
2

p jckbj we obtain the Abelian-
Higgs phase; i.e., this is a relativistic Landau-Ginzburg
theory, with ðjbj2 � c2Þ2 � g and 2cjbj2 � gc. However,
in order to have a consistent truncation, in the above action
we need to also satisfy the equation ofmotion for the constant
jbj2. This is indeed the case for Bogomolnyi-Prasad-
Sommerfeld (BPS) solutions of the Abelian-Higgs action.
When canonically normalizing all the fields, the quartic

coupling for the canonical scalar ~�2 from (14) becomes g2,
with g ¼ 2�jbj=ðNkÞ, and the coefficient of the middle
term in (14) becomes N2g2=2. Then, for jbj � c, with
k� 1 and N large, g2 ��=ðN2kÞ ��=N2 � �, and ge-
nerically the mass of j�j is ��. But we can tune the
system to be near zero mass, so that (for m2 � 0) we
have jm2j � �2. Generic modes of the ABJM model
(the nonzero modes dropped in our consistent truncation)
have mass�, as easily checked in (1) and (5). Therefore we
can drop the nonzero modes in the reduced low energy
theory even at the quantum level, as advertised in the
introduction, and consistently truncate to (13). Note also
that substituting the reduction ansatz into the ABJM action,
we find that the (sextic) potential gives a term with
bilinear coupling to the nonzero modes 
� of the type
ð~�2Þ4ð
�Þ2=ðk2N2Þ / 1=N2, the 2-fermion-2-scalar term
gives a bilinear coupling ð~�2Þ2 �
c
c =ðkNÞ / 1=N, and
mass deformation quartic in the scalars gives a bilinear
coupling ð~�2Þ2ð
�Þ2�=ðkNÞ / �=N, which is � �,
though still � �=N2 � g2.
Now also note that for jbj ¼ c, the potential (14) has the

vacuum j�j ¼ jbj ¼ c, which is nothing but the fuzzy
sphere vacuum of the massive ABJM model; therefore,
classical solutions of the reduced theory (13) are some
type of deformations of the fuzzy sphere. Other examples
of such classical solutions will be given elsewhere [7].
These solutions, giving a collective dynamics of OðNÞ
modes, then correspond to finite deformations of the grav-
ity dual, unlike any solutions obtained by turning on a
single mode. Therefore we retain the good features of the
large N behavior (classical gravity dual) with this Abelian
reduction, as advertised in the introduction.
At this point, one might ask whether the modes in the

Landau-Ginzburg action we consider are the only light
ones and if not, do they couple to any others? For the extra
modes in (10) that we dropped, the answer is simple. All
canonically normalized fields couple to the Landau-
Ginzburg (LG) mode with coupling ��=ðN2kÞ � g2.
Moreover, all �i, �i have an explicit mass term of the
order N2c4=k2 ��2 and there is also a contribution
from the vacuum expectation value (VEV) �1 ¼ b of
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1=k2½�4c2b2j~�2j2þb4ðj~�2j2þj ~�2j2Þ�. Consequently in
the region of parameter space where our LG mode ~�2

can be tuned to be light all the other modes stay heavy.
For generic modes outside the action (10) the answer is a
bit more difficult. As we have already argued, since generic
mass terms are of the order m2 ��2 > 0, the only thing
remaining to check is if they can be (almost) cancelled by
the terms coming from the Higgs VEV �1 ¼ b. We can
obtain the total mass term by keeping only two CI’s in
the potential (4), and replacing the rest by CI ¼ ðR1 ¼
bG1; R2 ¼ Q1 ¼ Q2 ¼ 0Þ. Setting this to zero produces a
very long equation for the trace of products of two CI

matrices and up to four G1 matrices being zero, which
we will not reproduce here. One solution is given by our
LG light mode, CI¼ðR2¼�2G

2;R1¼Q1¼Q2¼0Þ, and
amounts to an identity between the G1 and G2 matrices

(together with the condition jbj2 ¼ c2ð2� ffiffiffi
3

p Þ for a mass-
less LG field). The question is whether the solution is
unique. While we don’t know of a general mathematical
proof of uniqueness, physically it is clear that there can’t be
another solution. Indeed, this solution is related to the
existence of the maximally supersymmetric fuzzy sphere
vacuum characterized by G1, G2; once we have G1 turned
on, there is an instability towards turning on G2 also.
Consequently, the mass of �2 can become negative, pass-
ing through zero. Another solution would amount to an-
other instability towards a different vacuum with the same
G1 turned on. As there are no vacua connected in this way
to the maximally supersymmetric one, this is impossible.
Finally, we note that there can be other light modes in other
regions of parameter space, but since all we need here is
that at N large, k� 1 and the only VEV turned on is bG1,
there are no other light modes.

The question at this stage is how relevant are any of our
effective field theories in the condensed matter context?
Following [13], we now outline an argument to suggest that
an appropriate answer is very. Beginning with the Hubbard
model for spinless bosons, with a ground state where each
site in the lattice is populated by an equal number of

bosons, one can construct a discretized field �i � �iai þ
	ih

y
i , where ayi creates a particle above the ground state

and hyi creates a hole. One then obtains the relativistic
Landau-Ginzburg action

S¼
Z
d3xð�j@t�j2þv2j ~r�j2þðg�gcÞj�j2þuj�j2Þ;

(15)

in the continuum limit. For g < gc we have an Abelian-
Higgs system, i.e., a superconducting phase, while for
g > gc we have an insulator phase. At g ¼ gc (and tem-
perature T ¼ 0) the model describes a conformal field
theory. The systems described by the above model also
have a quantum critical phase which opens up at nonzero
temperature for a T-dependent window around g ¼ gc.
This quantum critical phase is strongly coupled and

difficult to analyze using usual condensed matter methods
and hence a good candidate for a holographic description.
Moreover, the Hubbard model is a drastic simplification

of a real condensed matter system. The model was used to
describe the quantum critical phase of (bosonic) 87Rb cold
atoms on an optical lattice, but the description is believed
to hold more generally for the quantum critical phase. For
instance, high Tc superconductors have a strange metal
phase that is believed to be of the same quantum critical
phase type. In fact, a simple model for a solid with free
electrons describes the qualitative features of the ABJM
Abelianization. One can consider an electron at site i in the
model coupled to an electron at site j to form a spinless
boson �ij ¼ �c ic j. In two spatial dimensions there are

OðN2Þ neighbours of maximum distance N away. It is not
unreasonable to consider that the length between the sites

has a maximum value N 	 j~i� ~jj. We can write this field
as �ab

i0 , where i0 is at midpoint between i and j, and a, b

correspond to 1; 2; . . . ; N in spatial directions x, y. If the
normalized wave functions for �ab

i0 give probabilities for

the existence of the pair j�ab
i0 j2, and assuming rotational

invariance so only rotationally invariant modes c ðaÞ,
thought of as eigenvalues of the matrices�ab, are nonzero,
we can consider a decaying solution jc ðaÞj2 / N � a.
This corresponds to the ABJM matrix G2, with

ðG2Gy
2 Þmn ¼ ðN �mÞ
mn. Indeed, in the ABJM model

we have the field �2ðG2Þmn, corresponding to bi0 �P
ac ðaÞ�aa

i0 . The average distance in between sites is then

hai ¼
R jc ðaÞj2að2�adaÞR jc ðaÞj2ð2�adaÞ ¼ N

2
; (16)

consistent with the fact that there is a large distance be-
tween sites that couple, as is known to be the case.
Note that while the above fields are the only ones that are

turned on, the system has, in principle, several more pos-
sibilities. For example, we can form more than one matrix
scalar field, like the 4 CI’s of ABJM, by having more
electrons at each site that can couple to form spinless
bosons, as well as matrix fermions, by having two elec-
trons at site i couple among themselves and with an elec-
tron at site j. We can also construct two Chern-Simons
(topological) gauge fields by a generalization of the
Abelian Chern-Simons case (see e.g., Ref. [14]) as follows:
Consider two fermions at sites i and i00 coupling to form

�aa0
i0 at their midpoint i0 and two fermions at sites j and j00

coupling to form �bb0
j0 at their midpoint j0. Then the field

e ~að~ri0 Þ ¼ ~ri0
X
j0�i0

�ð~ri � ~rjÞ; (17)

where �ð ~ri � ~rjÞ is the angle made by ~ri � ~rj with a fixed

axis, corresponds to a Chern-Simons gauge field. The
indices on the gauge field are the planar indices for the
only variable above, ~rii0 � ~rjj0 (changing ~rii0 by itself just

gives a harmless overall translation), as well as the discrete
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choice for ~rii0 to belong to i
0 or j0, giving two gauge fields A

and Â. The scalars�ab
i0 act as bifundamental with respect to

them. It is clear then that, qualitatively at least, the model
outlined above describes all the fields of ABJM, as well as
the Abelianization.

In some sense, the three-dimensional Landau-Ginzburg
model makes more sense as a dimensional reduction from
four dimensions; the same is true of our Abelianization
picture. The matrixG1, one of the two matricesG1,G2 that
describe the fuzzy two-sphere, is multiplied by the constant
jbj, so in a sense we have a fuzzy circle (limit of a fuzzy
two-sphere), becoming classical at large N. The physical
radius of a fuzzy sphere construction was argued in the
literature on brane polarizations to be (see e.g., Ref. [11])

R2
ph ¼

2

N
Tr½XIXy

I � ¼
2

N
Tr½CICy

I �4�2l3P; (18)

where l3P ¼ l2sR11. Assuming the same formula holds for
the fuzzy circle case, and that like in the pure fuzzy sphere
case, the 11th direction has radius R11 ¼ Rph=k, we obtain

Rph ¼ ðN � 1Þl2s 4�
2jbj2
k

: (19)

The pure (massless) ABJM model corresponds to the IR
limit of M2 branes on R2;1 � C4=Zk and has as a gravity
dual type IIA string theory on AdS4 � CP3. In the massive
case, the spacetime for M2-brane propagation is more
complicated [15], and the gravity dual even more so
[15,16], so we will not reproduce the formulas here.

To summarize, in this Letter we have presented a con-
sistent truncation of the ABJMmodel to a collective model
of OðNÞ modes out of the OðN2Þ, reducing to an Abelian
Landau-Ginzburg model. We have also seen that we can
map this process to a simple condensed matter model that
reproduces the same general features. This provides a
concrete step towards a well-defined AdS/CMT model,
where there is a large N theory for the condensed matter

system, with a gravity dual, and yet the relevant physics is
encoded in a simple Abelian model.
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