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We establish the fluctuation theorem in the presence of information exchange between a nonequilibrium

system and other degrees of freedom such as an observer and a feedback controller, where the amount of

information exchange is added to the entropy production. The resulting generalized second law sets the

fundamental limit of energy dissipation and energy cost during the information exchange. Our results

apply not only to feedback-controlled processes but also to a much broader class of information

exchanges, and provide a unified framework of nonequilibrium thermodynamics of measurement and

feedback control.
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Introduction.—Thermodynamics of information pro-
cessing has attracted great interest ever since Maxwell’s
seminal work [1–9]. A number of researchers have studied
various aspects on the relationship between information and
thermodynamics [10–59]. Such a field of research might be
called ‘‘information thermodynamics.’’ Recently, informa-
tion processing at the level of thermal fluctuations has been
experimentally realized in small thermodynamic systems
such as colloidal particles [60–62]. Energetic and entropic
costs of information processing are vital for designing and
controlling nanomachines and nanodevices in thermally
fluctuating environments.

A key concept in information thermodynamics is a
correlation between two subsystems, which is character-
ized by the mutual information [63,64]. If the subsystems
are statistically independent, the mutual information van-
ishes and the entropy is additive; i.e., the Shannon entropy
of the total system is given by the sum of those of the
subsystems. In the thermodynamic limit, a correlation
between two subsystems is negligible, and therefore the
mutual information vanishes to the leading order. This is
the reason why the entropy is additive in conventional
thermodynamics. In contrast, in small thermodynamic sys-
tems, the mutual information can take a positive value and
serves as a resource of the work or the free energy through
feedback control, as illustrated in Maxwell’s gedanken
experiment [1]. The entropy of a system can be decreased
without any heat dissipation if we use the correlation as a
resource of the entropy decrease, although, in the con-
ventional thermodynamics, the entropy of the system is
decreased only in the presence of heat dissipation.

Before developing a general theory, let us consider the
Szilard engine [2] to elucidate the physical meaning of the
correlation. A single-particle gas is enclosed in a box that is
in contact with a heat bath at inverse temperature �. We
consider cyclic processes in which the initial and final

states of the gas are in thermal equilibrium with the same
volume of the box. If we do not know the position of the
particle, we cannot extract a positive amount of work from
the gas because of the second law of thermodynamics (i.e.,
the Kelvin principle). However, if we have one bit (¼ ln2
nat in the natural logarithm) of information about the initial
position of the particle, we can extract ��1 ln2 of work by
means of feedback control. To obtain the information, we
insert a barrier at the center of the box, and measure
whether the particle is in the left or right side (see also
Fig. 1). The measurement outcome is recorded in a mem-
ory device. Here, the ‘‘information’’ means the correlation
between the position of the particle and the memory, which
is characterized by ln2 of the mutual information. It is then
used as a resource of the work through an isothermal
expansion of the left or the right box.
The Szilard engine is restricted to the special setup with

two boxes. How should fundamental laws of thermody-
namics be modified in the presence of a more general
correlation between the system and other degrees of free-
dom? This question involves a broad class of information

FIG. 1 (color online). The Szilard engine and memory which
are initially correlated with one bit ( ¼ ln2 nat) of the mutual
information. We can then use this information to extract ��1 ln2
of work by means of feedback control. Here the information is
used for deciding in which direction we perform an isothermal
expansion.
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processes of thermodynamic systems including the situ-
ations of measurement and feedback control.

In this Letter, we generalize the fluctuation theorem (FT)
[65–72] and the second law of thermodynamics (SL) by
explicitly taking correlations into account, where the en-
tropy production (EP) and the mutual information are
treated on an equal footing. Our setup includes measure-
ment and feedback control as important special cases,
where they are treated within the same framework. As a
corollary, we obtain a generalized FT that applies to mea-
surement processes. In addition, our previous results, such
as a generalized FT for feedback control [35] and the
minimal energy cost for measurement [23], are reproduced
as special cases of our results. Our results are valid not only
in Langevin systems but also far from equilibrium situ-
ations of classical stochastic dynamics, because they can
be derived on the basis of the detailed FT [66–69].

Setup.—Suppose that a classical stochastic system X is
in contact with multiheat baths labeled by k ¼ 1; 2; � � � at
inverse temperatures �k. System X may be driven to far
from equilibrium by changing external parameters. We can
extract work from X through such external parameters. We
assume that the time evolution of X is described by a
classical stochastic dynamics from t ¼ 0 to t ¼ � along
trajectory XF. Let x (x0) be the initial (final) phase-space

point of X, and Pi
F½x� (Pf

F½x0�) be the corresponding proba-
bility distribution. The EP in X and the baths is then
given by

� :¼ �s�X
k

�kQk; (1)

where �s :¼ ð� lnPf
F½x0�Þ � ð� lnPi

F½x�Þ is a change in
the stochastic entropy and Qk is the heat absorbed by the
system from the kth bath. We note that��kQk is regarded
as the entropy change in the kth bath.

In addition to the heat baths, system X interacts with
another system Y. We assume that Y does not evolve in
time during the interaction. This assumption applies not
only to the standard setup of Maxwell’s demon but also to a
broader class of information processing. System X then
evolves depending on the state y of Y (see also Fig. 2). The

conditional probability of a path XF being realized under
the initial condition of x depends on y such that the condi-
tional probability is given by PF½XFjx; y�.
We also assume that x may be correlated with y in

the initial and final states. Let Pi
F½x; y� (Pf

F½x0; y�) be the
initial (final) joint probability distribution of x (x0) and y,

where Pi
F½x� ¼

R
dyPi

F½x; y� (Pf
F½x0� ¼

R
dyPf

F½x0; y�) and
PF½y�¼

R
dxPi

F½x;y�¼
R
dx0Pf

F½x0;y� are the correspond-

ing marginal distributions. If Pi
F½x; y� ¼ Pi

F½x�PF½y�, x and
y are statistically independent. Otherwise, they are corre-
lated. We characterize the initial and final correlations
between the two systems by

Iixy :¼ ln
Pi
F½x; y�

Pi
F½x�PF½y� ; Ifx0y :¼ ln

Pf
F½x0; y�

Pf
F½x0�PF½y�

: (2)

If x and y (x0 and y) are not correlated, Iixy (I
f
x0y) vanishes.

The ensemble averages of (2) (hIixyi and hIf
x0yi) give the

mutual information [63,64]. We also refer to Iixy and I
f
x0y as

the mutual information. Then, �I :¼ If
x0y � Iixy gives the

change in the mutual information during the dynamics.
As discussed in detail later, this setup includes both

cases of measurement and feedback control. In the case

of measurement, hIixyi ¼ 0 and hIf
x0yi> 0, where hIf

x0yi de-
scribes the obtained information. In contrast, in the case of
feedback control, it is necessary that hIixyi> 0, which is the

resource of the work and the free energy, and hIf
x0yið<hIixyiÞ

is the remaining correlation after the feedback control.
Main results.—In the absence of the initial or final

correlations, EP (1) satisfies the integral FT (or the
Jarzynski equality) he��i ¼ 1 [65,67,69], where h� � �i
describes the ensemble average over all microscopic tra-
jectories. In contrast, in the presence of information pro-
cessing with initial and final correlations, the integral FT is
generalized as

he��þ�Ii ¼ 1; (3)

where we assume that

Pi
F½x; y� � 0 for any ðx; yÞ: (4)

Equality (3) is the main result in this Letter, which will be
proved later. By using the convexity of the exponential

function ehxi � hexi, Eq. (3) leads to
h�i � h�Ii: (5)

Equality (3) and inequality (5) imply that we can control
EP � in the subsystem by changing the correlation. In the
absence of initial or final correlations, Eq. (3) and inequal-
ity (5) reduce to the conventional FT and SL, respectively.
Without assumption (4), inequality (5) holds, but Eq. (3)
does not, as shown later.
In the presence of a single heat bath at inverse

temperature �, inequality (5) implies the minimal energy
dissipation

X
F

t

0 x

x

y
i
xyI

f
yxI

FIG. 2 (color online). Interaction between X and Y. System X
evolves from x to x0 along a path XF in such a manner that
depends on the information about y, while y does not evolve in
time.
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��hQi � �h�si þ h�Ii; (6)

where �hQi is the heat transferred from X to the bath. If
h�Ii ¼ 0, inequality (6) reduces to ��hQi � �h�si,
which leads to the celebrated Landauer principle and its
generalizations [4,12,15–23]. We note that h�si is a change
in the total Shannon entropy.

We next consider the energy cost for the information
exchange with a single heat bath. Let E½x; t� be the
Hamiltonian of X and Eint½x; y; t� be the interaction
Hamiltonian between X and Y. We note that E and Eint

may depend explicitly on time t due to a change in external
parameters. The first law of thermodynamics is given by

�Eþ�Eint ¼ W þQ; (7)

where �E :¼ E½x0; �� � E½x; 0�, �Eint :¼ Eint½x0; y; �� �
Eint½x; y; 0�, and W is the work performed on the system.
From Eqs. (6) and (7), we obtain

hWi � �Feff þ h�Einti þ ��1h�Ii; (8)

where FeffðtÞ :¼ hEðtÞi � ��1hsðtÞi is an effective free
energy of X [50], and �Feff :¼ Feffð�Þ � Feffð0Þ. We
note that there is no thermodynamic restriction on the value
of h�Einti as is the case for h�Ei. Inequality (8) shows that
the correlation-induced energy cost ��1h�Ii should be
added to the conventional bound in thermodynamics.

A crucial point of our setup is that the entropy of X
can be decreased without any heat flow. In conventional
thermodynamics, h�si � �hQi, where the negative heat
flow allows the entropy to decrease. In contrast, in our
setup, h�si � h�Ii if hQi ¼ 0, where the negative mutual-
information change is the resource of the entropy decrease
in X. Such an information-energy balance is based on the
dynamics characterized by Fig. 2, where one of the two
systems does not evolve in time. The generalization of our
results to more involved situations, where the two systems
can influence each other and evolve in time, is an interest-
ing future challenge.

We now discuss important special cases: measurement
and feedback control.

Measurement.—Let X be a measuring system (a demon)
and Y a measured system [see Fig. 3(a) for a special case].
We assume that X is initially not correlated with Y. Then,
X performs a measurement on the value of y. In the final

state, I :¼ If
x0y characterizes the information gain byX that

is positive because of h�Ii ¼ hIi> 0. In this case, Eq. (3)
reduces to the generalized integral FT for the measurement
process:

he��þIi ¼ 1: (9)

Consequently, inequality (5) reduces to h�i � hIi, which
means that an additional EP is accompanied by the mea-
surement. Our result is consistent with Bennett’s observa-
tion that the energy dissipation can be zero during the
measurement process with a single heat bath [5]. In fact,

if both h�si and hIi equal the Shannon information
obtained by the measurement, inequality (6) reduces to
�hQi � 0, which is the case that Bennett considered. In
general, the minimal heat dissipation is given by��hQi �
�h�si þ hIi. The work needed for the measurement is
bounded as hWi � �Feff þ h�Einti þ ��1hIi, where
��1hIi describes an additional energy cost. A special
case of this inequality was obtained in Ref. [23].
Feedback control.—Let X be a controlled system and Y

a controller (a demon) [see Fig. 3(b) for a special case]. We
assume that X is initially correlated with Y with mutual
information I :¼ Iixy. By using this initial correlation, Y

performs feedback control on X in such a manner that the
evolution of X depends on y. The correlation remaining

after the feedback is given by Irem :¼ If
x0y. In this case,

Eq. (3) is equivalent to

he���ðI�IremÞi ¼ 1; (10)

which is the generalized integral FT for the feedback
process. We note that a similar equality was obtained in
Ref. [35], which is equivalent to the present result with
Irem ¼ 0. Corresponding to Eq. (10), inequality (5) reduces
to h�i � �hI � Iremi, where hI � Iremi> 0 sets an upper
bound of the correlation that can be utilized by the demon.
Consequently, the work that can be extracted from a single
heat bath by the demon, denoted as Wext :¼ �W, is
bounded as hWexti � ��Feff � h�Einti þ ��1hI � Iremi,
where ��1hI � Iremi describes the extractable work on
top of the conventional bound.
Derivation of the main result.—We now derive Eq. (3)

and other related formulas. We first note that PF½XF; y� ¼
PF½XFjx; y�Pi

F½x; y�, where PF½XF; y� is the joint probabil-
ity distribution of realizing trajectory XF and y. We then
introduce the backward processes, in which the control
protocol of external parameters is time-reversed. For
simplicity, we assume that the phase space of the system

FIG. 3 (color online). (a) Position measurement on the Szilard
engine (Y) by a memory system (X), where x describes the
phase-space point of the memory, and y takes on 0 or 1
corresponding to ‘‘left’’ or ‘‘right.’’ The initial correlation is

hIixyi ¼ 0 and the final correlation is hIfx0yi ¼ ln2. (b) Feedback

control on the Szilard engine (X) by a demon (Y), where x
describes the position of the particle, and y ( ¼ 0 or 1) is the
measurement outcome stored in the memory. The initial corre-

lation is hIixyi ¼ ln2 and the final correlation is hIf
x0yi ¼ 0.
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does not include momentum terms; the generalization of
our arguments to situations with momentum terms is
straightforward. In considering the time-reversed trajec-
tory, the initial probability distribution of the backward
process is taken to be the final distribution of the forward
process. Let XB be the time-reversed trajectory of XF. The
joint probability distribution of ðXB; yÞ in the backward

processes, denoted as PB½XB; y�, is given by PB½XB; y� ¼
PB½XBjx0; y�Pf

F½x0; y�, where Pf
F½x0; y� is the initial proba-

bility distribution of the backward processes and
PB½XBjx0; y� is the conditional probability of realizing XB

under the initial condition of (x0, y).
The detailed FT in our setup is given by

PB½XBjx0; y�
PF½XFjx; y� ¼ e

P
k

�kQk

; (11)

where we used the assumption that y does not evolve in
time. We note that Eq. (11) holds even when h�Einti � 0.
We also note that the detailed FT can be proved in
the presence of multi-heat baths in several setups. For
example, it has been proved under the assumptions that
the total system including the heat baths obeys the
Hamiltonian dynamics and that the initial probability dis-
tributions of the baths are the canonical distributions [68].
By noting that

PB½XB;y�
PF½XF;y�¼

PB½XBjx0;y�
PF½XFjx;y� �

Pf
F½x0�

Pi
F½x�

�P
f
F½x0;y�=Pf

F½x0�
Pi
F½x;y�=Pi

F½x�

¼PB½XBjx0;y�
PF½XFjx;y� �

Pf
F½x0�

Pi
F½x�

� Pf
F½x0;y�

Pf
F½x0�PF½y�

�P
i
F½x�PF½y�
Pi
F½x;y�

;

(12)

we obtain

PB½XB; y�
PF½XF; y� ¼ e��þ�I; (13)

which is the detailed FT in the presence of information
processing. We note that �� �I can be regarded as the
total EP in the composite system XY and the baths, and
therefore the total system satisfies the conventional FT.
Equality (13) implies the trade-off relation between the
change in mutual information and EP in the subsystem.

By using dXF ¼ dXB,
R
dXBdyPB½XB; y� ¼ 1 and

assumption (4), we obtain

he��þ�Ii ¼
Z PB½XB; y�

PF½XF; y�PF½XF; y�dXFdy ¼ 1; (14)

which implies Eq. (3). Moreover, we find from Eq. (13)
that

h���Ii ¼
Z

PF½XF; y� lnPF½XF; y�
PB½XB; y� dXFdy; (15)

where the right-hand side is the relative entropy between
the forward and backward probabilities. We note that
Eq. (15) is a generalization of the result in Ref. [70].
Inequality (5) is also confirmed from Eq. (15) because of
the positivity of the relative entropy. The equality in (5) is
achieved if PF½XF; y� ¼ PB½XB; y� holds for any XF and y.
We discuss the case in which assumption (4) is not

satisfied. Let S be a set of (x, y) such that Pi
F½x; y� � 0

holds for ðx; yÞ 2 S. We do not observe any event outside
S, because it has the zero probability. We then obtain

he��þ�Ii :¼
Z
ðx;yÞ2S

PB½XB; y�
PF½XF; y�PF½XF; y�dXFdy

¼
Z
ðx;yÞ2S

PB½XB; y�dXBdy; (16)

which is not necessarily equal to unity. In other words, the
left-hand side of Eq. (3) does not converge to unity in
the limit of Pi

F½x; y� ! þ0 for ðx; yÞ 2 S. In contrast, the
right-hand side of Eq. (15) converges in the same limit,
and therefore Eq. (15) and inequality (5) still hold without
assumption (4).
Concluding remarks.—We have addressed the issue of

correlations in thermodynamics by deriving the general-
ized integral FT (3) and SL (5). The generalized SL leads to
the minimal heat dissipation (6) and the minimal energy
cost (8) for information exchanges. As corollaries, we have
derived the generalized FT and SL for measurement and
feedback-controlled processes in a single framework. Our
results serve as guiding principles for designs of artificial
nanomachines and nanodevices; for example, we can judge
how efficient nanomachines with information processing
can be, by comparing their entropy productions with the
lower bounds of inequality (5). It is interesting to inves-
tigate a fluctuation theorem that only involves the variable
of one of the systems that exchange information. Such a
fluctuation theorem has been found only for feedback-
controlled processes [52]. Moreover, experimental verifi-
cation of our results in small thermodynamic systems
merits further study.
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