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We propose a protocol for conditional suppression of losses in direct quantum state transmission over a

lossy quantum channel. The method works by noiselessly attenuating the input state prior to transmission

through a lossy channel followed by noiseless amplification of the output state. The procedure does not

add any noise; hence, it keeps quantum coherence. We experimentally demonstrate it in the subspace

spanned by vacuum and single-photon states, and consider its general applicability.
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Quantum communication holds the promise of uncondi-
tionally secure information transmission [1]. However, the
distance over which quantum states of light can be distrib-
uted without significant disturbance is limited due to un-
avoidable losses and noise in optical links. Losses, as well
as errors or decoherence, may in principle be overcome by
the sophisticated techniques of quantum error correction
[2–4], entanglement distillation [5–7], and quantum re-
peaters [8,9]. However, these techniques typically require
encoding information into complex multimode entangled
states, processing many copies of such states, and—even
more challenging—using quantum memories [10,11]. In
stark contrast to the situation for classical communication,
losses in quantum communication cannot be compensated
by amplifying the signal because the laws of quantum
mechanics imply that any deterministic phase-insensitive
signal amplification is unavoidably accompanied by the
addition of noise [12].

Very recently, however, heralded noiseless amplification
of light [13] was proposed as a way out, relaxing the
deterministic requirement. The noiseless amplification is
formally described by a quantum filter gn, where n is the
photon number operator and g > 1 denotes the amplifica-
tion gain. The noiseless amplifier thus modulates the am-
plitudes of Fock states jni by factor gn. This filtering can
conditionally increase the amplitude of a coherent state j�i
without adding any noise, gnj�i / jg�i. Although this
cannot be done perfectly because gn is unbounded, faithful
noiseless amplification is possible in any finite subspace
spanned by the Fock states jni with n � N, albeit with
a correspondingly low probability scaling as g�2N in the
worst case of input vacuum state. With current technology,
it has been proven possible to faithfully noiselessly amplify
states containing mostly vacuum and single-photon con-
tributions [14–19].

The noiseless amplifier can improve the performance
of quantum key distribution protocols [20–23] and it can
also be used to distribute high-quality entanglement over a
lossy channel [13,24]. Beyond that, the noiseless amplifier

is not useful to suppress losses in direct transmission of
arbitrary quantum states because it is not the inverse map
of a lossy channelL. Any superposition of Fock states that
is not a coherent state is mapped by L onto a mixed state,
and this added noise cannot be eliminated by noiseless
amplification.
Here, we find a solution to this fundamental problem by

exploiting the so-called noiseless attenuation, which can be
viewed as a heralded but reversible type of loss in the sense
that the state becomes closer to vacuum, while its purity
and quantum coherence are preserved. Mathematically, the
noiseless attenuator is described by an operator �n with
� < 1. This filtering can be accomplished with the help of
a beam splitter with amplitude transmittance � < 1 and a
single-photon detector monitoring the auxiliary output port
of the beam splitter, see Fig. 1(a). If the detector does not
register any photon, then the amplitudes of Fock states jni
are attenuated according to jni ! �njni. The noiseless
attenuator transforms j�i ! j��i and it is the proper in-
verse map of the noiseless amplifier gn with g ¼ 1=�.
In this Letter, we prove that a suitable combination of

noiseless attenuation and amplification provides a power-
ful tool to conditionally suppress losses in channelL to an
arbitrary extent without adding noise. Our schemeworks as

FIG. 1 (color online). (a) Implementation of noiseless attenu-
ation with a beam splitter of amplitude transmittance � and a
single-photon detector, conditioning on projecting onto vacuum
j0i. (b) Conditional noiseless loss suppression in direct state
transmission over a lossy channel L by a combination of noise-
less attenuation with transmittance � and noiseless amplification
with gain g.
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shown in Fig. 1(b). Before transmission through L, the
input state is noiselessly attenuated with transmittance �.
Intriguingly, this input-state preprocessing has the effect of
preferentially reducing the weight of the Fock states that
have a higher chance of being subsequently affected by
losses in L. After transmission through L, the state is
noiselessly amplified with gain g ¼ 1=ð��Þ, where � is
the amplitude transmittance of L. In the limit � ! 0, this
procedure conditionally converts the lossy channel L into
a perfect lossless channel on the subspace where noiseless
amplification jni ! gnjni is faithfully performed.

In order to provide more insight into our protocol, let us
consider the simple, yet important case of an input state
formed by a superposition of vacuum and single-photon
states, jc i ¼ c0j0i þ c1j1i. At the output of L, we get the
mixed state

�loss ¼ j ~c ih ~c j þ ð1� �2Þjc1j2j0ih0j; (1)

where j ~c i ¼ c0j0i þ �c1j1i. A naive compensation of
losses by noiseless amplification of �loss with gain g ¼
1=� results in the transformation j0i ! j0i, j1i ! gj1i,
and yields the state

�amp / jc ihc j þ ð1� �2Þjc1j2j0ih0j: (2)

Note that there remains an extra vacuum noise term pro-
portional to ð1� �2Þjc1j2. This noise term could be further
suppressed by amplification with gain higher than 1=�, but
such an approach would over-amplify the single-photon
contribution.

The right solution is to preprocess the state via noiseless
attenuation before the lossy channelL. The effective input
state of L then becomes jc effi ¼ c0j0i þ �c1j1i, and the
output state after attenuation, transmission, and amplifica-
tion with g ¼ 1=ð��Þ reads

�out / jc ihc j þ ð1� �2Þ�2jc1j2j0ih0j: (3)

This has reduced the unwanted vacuum noise term by a
factor of �2. In the limit � ! 0, this term vanishes and the
output state becomes equal to the input pure state jc i.

Our protocol formally resembles the scheme for the
suppression of qubit decoherence due to zero-temperature
energy relaxation by using partial quantum measurements
[25,26], but, importantly, it compensates losses instead of
qubit decoherence and can be extended to arbitrarily large
Hilbert space as we show now. The lossy channel L with
inputs restricted to the subspace spanned by Fock states jni
with n � N can be described by a finite number N þ 1 of
Kraus operators Aj,

�out ¼ Lð�inÞ ¼
XN

j¼0

Aj�inA
y
j ; (4)

where Aj ¼
PN�j

m¼0

ffiffiffiffiffiffiffiffiffiffiffiðmþjÞ!
m!j!

q
ð1� �2Þj=2�mjmihmþ jj ac-

counts for loss of j photons in a channel. Assuming that
the noiseless amplification is performed perfectly on the

subspace of the first N þ 1 Fock states by filter GNðgÞ ¼
g�N

P
N
n¼0 g

njnihnj, the effective channel M formed by

sequence of noiseless attenuation, losses, and noiseless
amplification reads,

M ð�inÞ ¼
XN

j¼0

GNðgÞAj�
n�in�

nAy
j GNðgÞ; (5)

with g ¼ 1=ð��Þ. Due to the structure of Kraus operators
we find that GNðgÞAj�

n ¼ g�N�jA�1
0 Aj and the effective

channel can be expressed as,

M ð�inÞ ¼ g�2N�in þ g�2N
XN

j¼1

�2jBj�inB
y
j ; (6)

where Bj ¼ A�1
0 Aj, and the inverse A�1

0 ¼P
N
n¼0�

�njnihnj
exists on the considered finite dimensional subspace. We
can see that the combination of noiseless attenuation and
amplification progressively suppresses j-photon losses by
a factor of �2j and in the limit � ! 0 the lossy channel is
converted into the identity channel, M ! I . The success
probability of the protocol is state dependent,

Psucc ¼ g�2N þ g�2N
XN

j¼1

�2jTr½By
j Bj�in�; (7)

and Psucc is lower bounded by g�2N .
We have experimentally demonstrated this protocol for

superpositions of vacuum and single-photon states. In the
experimental setup, shown in Fig. 2, a correlated photon
pair is generated [27], and the signal photon serves as a
probe of the lossy channel L while the idler photon drives
noiseless amplification. We characterize the loss suppres-
sion mechanism by using the Choi-Jamiolkowski isomor-
phism [28,29] between quantum channels and bipartite
states. We exploit the polarization degree of freedom of
the signal photon. The vertically (V) polarized mode is
transmitted through L, while the horizontally (H) polar-
ized mode is transmitted through a reference identity
channel I . If the signal photon is initially diagonally
polarized, j�þi ¼ 1ffiffi

2
p ðj1iVj0iH þ j0iV j1iHÞ, then we ob-

tain at the output a two-mode state �L ¼ ½LV � IH�ð�þÞ
that is isomorphic to the channel L,

�L ¼ 1� �2

2
j00ih00j þ 1

2
ðj01i þ �j10iÞðh01j þ �h10jÞ;

(8)

where the subscripts H and V were suppressed for sim-
plicity. Although �L is a two-qubit density matrix, its
support is restricted to a three-dimensional subspace
spanned by j00i, j10i, and j01i. The state j11i is absent
because no photons are generated in the passive channelL.
This property holds even if the channel is combined with
noiseless attenuation and amplification because these op-
erations only modulate Fock state amplitudes. In the tomo-
graphic reconstruction of �L we can, therefore, restrict
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ourselves to the above three-dimensional subspace. The
only nonzero off-diagonal elements of �L are h01j�Lj10i
and its conjugate. Since their phases can be set to zero by a
suitable phase shift ein�, we can represent L by a real �L
without any loss of generality.

Noiseless amplification is accomplished by two-photon
interference on polarizing beam splitter PBS2 that trans-
mits horizontally polarized modes and reflects vertically
polarized modes [14]. The state to be amplified is injected
into the vertically polarized mode of the first input port of
PBS2. An idler photon prepared in the linearly polarized
state cos�j0iVj1iH þ sin�j1iV j0iH is injected into the sec-
ond input port of PBS2. Noiseless amplification is success-
ful if a single photon emerges in the auxiliary output port of
PBS2 and is projected onto the diagonally linearly polar-
ized state j�þiwhich is heralded by a click of detectorD2.
Amplification gain of this scheme is given by g ¼ tan�
and can be tuned by rotating HWP4. Our implementation
of the noiseless amplifier has a success probability lower
by a factor of g2=2ð1þ g2Þ than the optimal filter G1 ¼
g�1j0ih0j þ j1ih1j. Improvement by a factor of 2 could be
obtained by active feed-forward that performs � phase
shift on the vertically polarized signal mode when the idler
photon is projected onto antidiagonally polarized state
[30]. Noiseless attenuation is, in this proof-of-principle
experiment, simply equivalent to preparing the signal

photon in a suitably linearly polarized state �nV j�þi /
ð1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
Þðj0iVj1iH þ �j1iVj0iHÞ ¼ j��i, which is ac-

complished by half-wave plate HWP1. Given our method

of channel characterization, the experiment can be inter-
preted as a faithful transfer of one part of a path-entangled
single-photon state j�þi over a lossy channel [13].
A weakly entangled state j��i is prepared at the input
and the noiseless amplification increases entanglement of
the output state while preserving its high purity [24].
The state analysis block including detectors D3 and D4

serves for a full tomographic analysis of the polarization
state of the output signal photons. Moreover, we employ
detector D1 to monitor the fraction of photons that are
lost in channel L. Note that, in contrast to noise-reduction
schemes based on measurements of the environment [31],
detector D1 is not needed for the protocol itself and only
serves here for channel characterization. We measure the
two-photon coincidencesD1&D2,D3&D2, andD4&D2 for
different settings of the wave plates in the output analysis
block, and from these data we completely determine �L.
This coincidence measurement amounts to post-selection
that eliminates negative effects of limited detection effi-
ciency from the experiment.
In Fig. 3 we plot the reconstructed �L for four different

channels. Panel (a) shows �L when no losses are inserted
in the path of vertically polarized signal photons. The
reconstructed operator is very close to the identity-channel
matrix �I ¼ j�þih�þj. The similarity of a channel L
with respect to the identity channel I is measured by the
channel fidelity F ¼ h�þj�Lj�þi, and we obtain F ¼
0:958� 0:002. Then, the �L matrix of a channel L with

FIG. 2 (color online). Experimental setup. Correlated signal
and idler photons with wavelength of 810 nm are generated in
the process of spontaneous parametric down-conversion in a
nonlinear 	� BaB2O4 crystal pumped by a laser diode [27]
(not shown) and injected into a linear optical setup consisting
of polarizing beam splitters (PBS), half-wave plates (HWP),
quarter-wave plate (QWP), polarizer (POL), and a variable
partially polarizing beam splitter (VPPBS). Photons are detected
with four single-photon detectors Dj. The VPPBS is constructed

from a pair of calcite beam displacers (CBD) with two HWPs
and a PBS in between. The device spatially separates and
subsequently recombines horizontally and vertically polarized
beams. Tunable losses in the vertical-polarization component are
introduced by rotation of HWP2.

FIG. 3 (color online). Experimentally determined channel ma-
trices �L characterizing four different channels for input states
restricted to the subspace spanned by vacuum and single-photon
states. (a) Identity channel. (b) Lossy channel with amplitude
transmittance � ¼ 1=

ffiffiffi
2

p
. (c) Lossy channel compensated by

noiseless amplification with gain g ¼ ffiffiffi
2

p
. (d) Lossy channel

compensated by the combination of noiseless attenuation
with � ¼ 1=

ffiffiffi
2

p
at the input and noiseless amplification with

gain g ¼ 2 at the output. All matrices are normalized such that
Tr½�L� ¼ 1.
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50% losses (� ¼ 1=
ffiffiffi
2

p
) is depicted in Fig. 3(b). Losses

introduce imbalance between the amplitudes of j01i and
j10i states, and give rise to a nonzero probability for the
j00i state, which represents the fraction of lost photons in
the channel. If we attempt to compensate these losses by

noiseless amplification with gain g ¼ ffiffiffi
2

p
, we obtain the

channel in Fig. 3(c). The amplification balances the am-
plitudes of j01i and j10i states, but there remains some
population in the j00i state. This unwanted noise can be
further suppressed if we include noiseless attenuation.

The resulting channel for � ¼ 1=
ffiffiffi
2

p
and g ¼ 2 is shown

in Fig. 3(d). In contrast with Fig. 3(c), the noise term is
reduced while quantum coherence is preserved, as wit-
nessed by the off-diagonal terms in the subspace spanned
by j01i and j10i.

We have systematically investigated the performance of
the protocol as a function of the amplification gain g for
three different levels of losses: 25%, 50%, and 75%. The
fidelity F of the resulting quantum channel, plotted in
Fig. 4(a), monotonically grows with g, and theory (solid
lines) predicts F ! 1 in the high gain limit. The experi-
mentally observed F saturates at values slightly below 1,
which can be attributed mainly to imperfect two-photon
interference on PBS2. The measured visibility of the
Hong-Ou-Mandel dip [32] V ¼ 0:947� 0:002 is in good
agreement with the observed saturation. For comparison,
we also plot data for the naive loss compensation strategy
based solely on noiseless amplification without input state
preprocessing (� ¼ 1). The results shown as diamonds
demonstrate the fundamental limitation of this strategy.
With increasing gain, the channel fidelity reaches the
maximum Fmax¼ð3��2Þ=ð4�2�2Þ for gopt¼ð2��2Þ=�,
and then drops down due to over-amplification of the
single-photon part of the state. We define an effective
channel transmittance Teff as the conditional probability
that a photon injected into the channel emerges at the
output. Figure 4(b) demonstrates that Teff monotonically
increases with g and approaches unity in the high gain
limit.

The noiseless loss suppression is a conditional opera-
tion; therefore, its success probability is a crucial parame-
ter. Assuming pure input state c0j0i þ c1j1i we obtain

Psucc ¼ jc0j2g�2 þ jc1j2�2½�2 þ ð1� �2Þg�2�; (9)

which agrees with Eq. (7) if g ¼ 1=ð��Þ. The actual ex-
perimental success probability is significantly lower be-
cause it is reduced by imperfect collection efficiency 
C of
the idler photon and low overall detection efficiency 
D of
the heralding detector D2. We can only roughly estimate

C
D � 0:1. On the other hand, by taking the ratio of the
measured total coincidence rates for a given � and g and for
the identity channel with � ¼ 1, we can reliably estimate a
relative success probability normalized such that Prel ¼ 1
for the identity channel. We expect this relative success
probability to be equal to (9). Relative success probability

for the probe state j�þi is plotted in Fig. 4(c). It is in
good agreement with theoretical predictions obtained by
setting jc0j2 ¼ jc1j2 ¼ 1

2 in Eq. (9) and it scales as g�2 as

expected.
The post-selection utilized in the present experiment

could be avoided at the cost of increased technological
complexity. Using photon addition [33] and subtraction
[34–36], the noiseless attenuator and amplifier can both
be accomplished with high fidelity in a heralded manner
even with imperfect single-photon detectors [17,37,38].
In this way, the output state can be made fully available
for further processing. By coherently combining addition
and subtraction of N photons, the noiseless amplifier or
attenuator can be exactly implemented on the subspace of
states containing up to N photons. Note that even with this
robust approach, highly efficient detectors would be re-
quired to reach acceptable success probability for N > 1.
In summary, we have experimentally demonstrated a

protocol for conditional noiseless suppression of losses in
quantum optical channels using quantum filters at the input
and output of the channel. The procedure is universally
applicable and can enable faithful transmission of fragile
highly nonclassical or entangled states of light over lossy
channels. We anticipate numerous potential applications of

FIG. 4 (color online). Fidelity F of the resulting quantum
channel (a), effective channel transmittance Teff (b), and relative
success probability Prel of the protocol (c) are plotted as func-
tions of g with � ¼ min½1=ðg�Þ; 1�. Symbols represent experi-
mental results for three levels of losses: �2 ¼ 0:75 (red
triangles), �2 ¼ 0:50 (blue circles) and �2 ¼ 0:25 (green
squares). Solid lines indicate corresponding theoretical predic-
tions. Diamonds and dashed line in panel (a) provide channel
fidelity for the case without noiseless attenuation (� ¼ 1) and
50% losses. Statistical errors are smaller than the symbol size.
The experimental data for Prel are multiplied by 1

2 ð1þ �2Þ in
order to compensate for the fact that the noiseless attenuation �
was included in the input state preparation.
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the present scheme in quantum communication, quantum
metrology, and other fields where loss reduction is essen-
tial for optimum performance.
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