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The field of quantum computation currently lacks a formal proof of experimental feasibility. Qubits are

fragile and sophisticated quantum error correction is required to achieve reliable quantum computation.

The surface code is a promising quantum error correction code, requiring only a physically reasonable 2D

lattice of qubits with nearest neighbor interactions. However, existing proofs that reliable quantum

computation is possible using this code assume the ability to measure four-body operators and, despite

making this difficult to realize assumption, require that the error rate of these operator measurements is

less than 10�9, an unphysically low target. High error rates have been proved tolerable only when

assuming tunable interactions of strength and error rate independent of distance, which is also unphysical.

In this work, given a 2D lattice of qubits with only nearest neighbor two-qubit gates, and single-qubit

measurement, initialization, and unitary gates, all of which have error rate p, we prove that arbitrarily

reliable quantum computation is possible provided p < 7:4� 10�4, a target that many experiments have

already achieved. This closes a long-standing open problem, formally proving the experimental feasibility

of quantum computation under physically reasonable assumptions.
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A 2D array of qubits with tunable nearest neighbor
interactions is a believable experimental target [1–4]. The
surface code [5–10] can be implemented optimally using
such an array. Qubits undergoing very general unwonted
evolution can be accurately modeled as suffering random
Pauli X and Z errors [11]. This is a reasonable model as
quantum error correction (QEC) involves repeated opera-
tor measurements that project noisy qubits onto states that
differ from the desired state by Pauli operators. An expand-
able pattern of operator measurements Mi associated with
the surface code is shown in Fig. 1. The operators Mi are
called stabilizers [12].

Let the state of the qubits in Fig. 1 be j�i and, without
loss of generality, let us assume that we have measured all
stabilizersMi and observed theþ1 eigenstate, soMij�i ¼
j�i for all i. Note that ½Mi;Mj� ¼ 0 for all i, j, so such a

state exists. Suppose the central qubit suffers some general
error E, where

E ¼ a b

c d

 !
(1)

¼ aþ d

2
I þ bþ c

2
X þ�bþ c

2
XZþ a� d

2
Z: (2)

Equation (2) shows that E is a linear superposition of no
error (I), or an X, Z or XZ error. After the error E, a
subsequent round of Mi measurements will project E to I
if Mi ¼ þ1 for i ¼ 3, 5, 6, 8, X if Mi ¼ þ1 for i ¼ 5, 6
andMi ¼ �1 for i ¼ 3, 8, Y ifMi ¼ �1 for i ¼ 3, 5, 6, 8,
and Z if Mi ¼ þ1 for i ¼ 3, 8 and Mi ¼ �1 for i ¼ 5, 6.
All measurements Mi, i � 3, 5, 6, 8, will remain þ1.

The earliest proof that arbitrary reliability could be
achieved using the surface code assumed that each mea-
surement Mi had a probability q of reporting the wrong
result and that between each round of measurement each
qubit suffered a Z error with probability p [13]. The proof
showed that arbitrary reliability was achievable given suf-
ficient qubits for pþ q < 2:4� 10�11. More recently,
assuming perfect stabilizer measurements and a 3D array
of qubits each suffering a single error with probability p,
assumptions that are equivalent to a 2D array of qubits
with periodic faulty measurements and qubit errors, arbi-
trary reliability was proved possible given sufficient
qubits for p < 1:4� 10�9 [14]. These error bounds are
unphysically low.
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FIG. 1. A small surface code. Larger codes can be constructed
by expanding the pattern. Circles represent qubits. Each Mi

represents an operator (tensor product of Pauli X or Z operators)
that is measured to detect errors. Note that all operators
commute.
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Error rates slightly above 10�3 have been proved toler-
able in other quantum error correction codes when assum-
ing tunable interactions between arbitrary pairs of qubits
with interaction time and error rate independent of the
physical separation of the qubits [15,16]. However, no
physical machine possesses such interactions. As such,
there is currently no formal proof that arbitrarily reliable
quantum computation is experimentally feasible, raising
serious questions about the validity of quantum computa-
tion. In this Letter, we provide the much-needed formal
proof of experimental feasibility.

It has long been believed that error rates of 10�4 are a
reasonable experimental target [17,18]. Experimentally,
single-qubit measurement with error rate 10�4 and initial-
ization with error 10�5 have been demonstrated [19].
Single-qubit unitary gates have been demonstrated with
error 2� 10�5 [20]. Two-qubit gates are the most techni-
cally challenging, with Bell state preparation with error
7� 10�3 the current state-of-the-art [21]. There is no
physical reason to believe the technical challenges cannot
be overcome and similarly low-error two-qubit gates
achieved. All of these experiments were performed using
ion traps [22], a technology well suited to implementing a
2D array of qubits with tunable nearest neighbor interac-
tions [2]. We therefore seek a formal proof that arbitrarily
reliable quantum computation can be achieved given a 2D
array of qubits with only nearest neighbor two-qubit gates,
single-qubit measurement, initialization, and unitary gates,
with all gates having an error rate p� 10�4.

The only nontrivial unitary gates we will use will be
the Hadamard gate H (Hj0i ¼ jþi, Hj1i ¼ j�i) and
controlled-NOT gate CX (CXj10i ¼ j11i, CXj11i ¼ j10i).
Quantum circuits measuring the stabilizers Mi are shown
in Fig. 2. Note that these circuits can be implemented in
parallel across an arbitrarily large surface. A single round
of error detection is defined to be a single parallel execu-
tion of these circuits. Initialization to j0i results in j1i with
probability p, measurement reports the wrong eigenstate
with probability p, H and identity I are followed by an
error randomly chosen fromX, Y, Zwith probability p, and

CX is followed by an error randomly chosen from IX, IY,
IZ, XI; . . . ; ZZ with probability p. This error model is
justified by the above discussion of arbitrary errors being
projected to Pauli errors.
Errors followed by even perfect CX gates can result

in multiple errors. For example, CXj00i ¼ j00i, however
if there is an X1 error then CXX1j00i ¼ CXj10i ¼ j11i ¼
X1X2j00i. In words, the CX copies X errors on the control
qubit to the target qubit. Similarly, CXj þ þi ¼ j þþi,
however if there is a Z2 error then CXZ2j þ þi ¼
CXj þ �i ¼ j � �i ¼ Z1Z2j þ þi. In words, the CX

gate copies Z errors on the target qubit to the control qubit.
Define a detection event to be a pair of sequential

stabilizer measurements that differ in value. Figure 3(a)
shows a single X error propagating through rounds of
surface code error detection circuitry until two detection
events are generated. X errors are detected by sequential
pairs of Z stabilizer measurements, Z errors by sequential
pairs of X stabilizer measurements. Given the right pattern
of errors, any pair of sequential stabilizer measurements
can be associated with a detection event. We associate a
specific space-time location with each potential detection
event, namely the space-time midpoint between sequential
measurements.
For visualization purposes, we draw a sphere at every

space-time location a detection event can occur. We draw a
cylinder between every pair of space-time locations that
can be associated with detection events generated by a
single error. We call this structure of spheres and cylinders
a lattice of dots and lines. Lattices are constructed by
studying the propagation of all errors through the periodic
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FIG. 2. Quantum circuits measuring (a) ZZZZ and (b) XXXX
operators. The j0i represents initialization, the H represents
Hadamard, the MZ represents measurement of the operator Z,
and the dot and target symbols connected by lines each represent
a CX gate. The CX inverts the value of the target qubit if the
control (dot) qubit is in the state j1i and does nothing otherwise.
For example, CXð�j0i þ �j1iÞj0i ¼ �j00i þ �j11i. The inter-
action sequence is north, west, east, south, as shown in Fig. 3.
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FIG. 3 (color online). 2D surface code (grey). Time runs
vertically. Squares represent initialization to j0i, circles represent
Z basis measurement. Slashed squares represent initialization to
jþi, slashed circles represent X basis measurement (both
achieved using Hadamard gates). (a) A single error leading to
a pair of detection events (long vertical ellipses). A detection
event is a sequential pair of measurements with differing value.
Lines with arrows show the branching paths of error propaga-
tion. (b) An error leading to a single detection event due to
proximity to a boundary of the lattice.
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surface code quantum circuit [23,24]. An example of a
surface code lattice is shown in Fig. 4, including detection
events stochastically generated by errors during a simula-
tion of the surface code. Note the lines leading to nowhere,
indicating the nearby presence of potential errors leading
to single detection events. This only occurs near bounda-
ries of the array of qubits. Note also the regular yet non-
trivial structure of the lines.

There are two lattices, one associated with detecting X
errors and one with detecting Z errors. The distance of a
surface code is defined to be the length in lines of the
shortest path between disjoint boundaries of a lattice. Paths
of lines connecting disjoint boundaries can be associated
with chains of Pauli operators that commute with all
stabilizers yet are not products of stabilizers themselves.
Such chains of operators are called logical operators and
manipulate the data stored in the surface code.

For the purposes of this proof, we associate a weight of
1 with each line. Given a lattice with random detection
events, a minimum weight perfect matching is a set of
paths through the lattice such that every detection event
is incident on exactly one path, paths are allowed to
terminate at boundaries, and the total weight of all paths
is minimal. Edmonds’ minimum weight perfect matching
algorithm [25–28] can efficiently find such a set of paths.

Other algorithms have been used to correct errors in the
surface code [29–32], however, matching currently
remains the only algorithm that has been used to efficiently
handle errors in implementations of the surface code mak-
ing use of only two-qubit interactions and single qubit
measurements.
Define the line probability � to be the total probability of

all single errors leading to detection events at the endpoints
of the line. Given Pauli error models for each quantum
gate, with the strength of each error model scaled by a
global parameter p, the probability of a given line can be
expressed as a polynomial in p, with a linear relationship at
low p [23].
Let V be an n� n� n dot volume of lattice with non-

cyclic boundaries. Assume each pair of opposing faces is a
boundary of a distinct type. Let p be a characteristic
physical gate error rate low enough to ensure the probabil-
ity of any given line in V being associated with an error is
less than some small �. For minimum weight perfect
matching to fail to correct the errors in V, there must be
at least one path of m � nþ 1 lines connecting opposing
boundaries containing at least dm=2e lines associated with
errors. A path corresponding to a logical error not contain-
ing at least dm=2e lines associated with errors can be
matched with lower weight, contradicting the assumption
of a minimum weight perfect matching.
The number of paths of length m can be upper bounded

by choosing three of the six faces of V as path starting
points. This results in 3n2 starting points. Each dot is
connected to at most 12 neighboring dots (Fig. 4). A
general path from dot to dot that does not backtrack on
itself must link to one of 11 of the surrounding 12 dots (the
12th is already part of the path). After the starting point is
chosen, there are only m� 1 direction decisions to make.
There are thus no more than 3n211m�1 paths of length m.
Since we are only interested in non-self-intersecting,
opposing boundary connecting paths, this is a generous
upper bound.
Given a particular path of length m, the probability of at

least dm=2e of its lines being associated with errors is

Xm
i¼dm2 e

�
m

i

�
�i � Xm

i¼dm2 e

� m

dm2 e
�
�i (3)

¼
� m

dm2 e
�
�dm=2e Xm�dm2 e

i¼0

�i (4)

�
� m

dm2 e
�
�dm=2e 1

1� �
(5)

� �dm=2eXm
i¼0

�
m

i

�
(6)

¼ 2m�dm=2e: (7)

FIG. 4 (color online). Distance 4 example of a lattice of dots
and lines with stochastically generated detection events. Dots
(small spheres) correspond to space-time locations where the
endpoints of error chains could potentially be detected.
Detection events (large spheres) correspond to space-time loca-
tions where error chain end points have been detected. Lines link
pairs of dots where a pair of detection events could potentially be
generated by a single error. Darker lines link spatial boundaries
to a single dot where a single detection event could be generated
by a single error.
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The probability of a logical error is therefore no more than

X1
m¼nþ1

3n211m�12m�dm=2e (8)

¼ 3n2

11

X1
m¼nþ1

22m�dm=2e (9)

� 3n2

11

X1
m¼nþ1

22m�m=2 (10)

¼ 3n2

11
ð22 ffiffiffi

�
p Þnþ1

X1
m¼0

ð22 ffiffiffi
�

p Þm (11)

¼ 3n2

11
ð22 ffiffiffi

�
p Þnþ1 1

1� 22
ffiffiffi
�

p : (12)

Provided � < 1=484, the above can be made arbitrarily
small by increasing n. Since � can be expressed as a
polynomial in p independent of n, this proves that using
minimum weight perfect matching to correct errors in the
surface code results in a finite threshold error rate.
Assuming the surface code circuits and error models in
Ref. [23], in which the most error-prone line satisfied
� < 14p=5, a lower bound to the threshold error rate of
7:4� 10�4 is obtained. Given experimental achievements
to date, this is sufficiently high to formally prove the
experimental feasibility of arbitrarily reliable quantum
computation.

Equation (12) also proves that logical errors are expo-
nentially suppressed with code distance, implying
extremely low logical error rates can be achieved with
modest qubit overhead. Furthermore, as our proof is fun-
damentally based on minimum weight perfect matching
and this algorithm is highly efficient [27,28], we have
proved that the classical computing overhead is also
modest.
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