
Device-Independent Bounds for Hardy’s Experiment

Rafael Rabelo,1 Law Yun Zhi,2 and Valerio Scarani1,2

1Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
2Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore

(Received 18 July 2012; published 31 October 2012)

In this Letter, we compute an analogue of Tsirelson’s bound for Hardy’s test of nonlocality, that is, the

maximum violation of locality constraints allowed by the quantum formalism, irrespective of the

dimension of the system. The value is found to be the same as the one achievable already with two-

qubit systems, and we show that only a very specific class of states can lead to such maximal value, thus

highlighting Hardy’s test as a device-independent self-test protocol for such states. By considering

realistic constraints in Hardy’s test, we also compute device-independent upper bounds on this violation

and show that these bounds are saturated by two-qubit systems, thus showing that there is no advantage in

using higher-dimensional systems in experimental implementations of such a test.

DOI: 10.1103/PhysRevLett.109.180401 PACS numbers: 03.65.Ud, 03.65.Wj, 03.67.Mn

Introduction.—The development of quantum informa-
tion science is based on a recurrent pattern: nonclassical
features of quantum physics, previously considered as
mind-boggling and worth only of philosophical chat, are
found to have an operational meaning and even to be
potentially useful for applications. One of the discoveries
that triggered this development is the prediction and ob-
servation of the violation of Bell inequalities [1]. This
observation implies that correlations obtained by measur-
ing separated quantum systems locally cannot be simulated
classically without communication, a fact that is often
referred to as nonlocality.

Within quantum information, nonlocality has undergone
an interesting parable. For many years, it has been put aside
as having fulfilled its role: the loathed local variables
models having been disposed of forever, one could peace-
fully concentrate on entanglement theory. Only a few
researchers kept on believing that this very intriguing
observation could be useful for something in itself. The
latter view was vindicated a few years ago, when it was
noticed that nonlocality allows device-independent assess-
ments: indeed, nonlocality is assessed only from the input-
output statistics of the measurement, without reference to
the degree of freedom that is being measured. This power-
ful type of assessment is sensitive to the existence of
undesired side channels and will be ideal for certification
of future quantum devices. So far, device-independent
results are available for the security of quantum cryptog-
raphy [2,3], the quality of sources [4,5] and measurement
devices [6], and the amount of randomness that one can
generate [7,8]. In this Letter, we study the possibility of
device-independent assessment of one of the earliest pro-
posals to check nonlocality: it used to be called Hardy’s
paradox but, in the spirit of quantum information, we
would rather call it Hardy’s test [9].

Hardy’s test was originally stated by means of a particu-
lar experimental setup consisting of two overlapping

Mach—Zehnder interferometers, one for electrons and
one for positrons, arranged so that if the positron and the
electron each take a particular path, they will meet and
annihilate one another. A paradox arises under the assump-
tion of local realism: in any classical local theory, a certain
detection pattern must never occur, while quantum theory
assigns to its occurrence a nonzero probability, hereafter
referred to as Hardy’s probability. It was soon realized that
the argument could be extended to different states and
measurements [10,11], and proved to hold for almost all
entangled pure states of two qubits, with maximum
Hardy’s probability equal to

pHardy ¼ ð5 ffiffiffi
5

p � 11Þ=2 � 9%: (1)

Interestingly, though, the maximally entangled state of two
qubits does not show nonlocality in Hardy’s test.
Hardy’s test has been the object of several theoretical

generalizations [12–20] and has been implemented in ex-
periments using photonic systems [21–25]. The latter,
however, had to consider deviations from the original
proposal, where the probabilities of a set of observa-
tions—hereafter, referred to as constraint probabilities—
were assumed to be strictly equal to zero, an obviously
unrealistic requirement. One way to overcome this prob-
lem is to consider a nonideal version of Hardy’s test, and to
compute local bounds on Hardy’s probability in terms of
the relaxed bounds on the constraint probabilities. The
computed local bound, which a successful experiment
must violate [26–28], turns out to be equivalent to the
Clauser–Horne (CH) Bell inequality [29].
In this Letter, we provide three device-independent re-

sults on Hardy’s test. First, we consider the original (or
ideal) Hardy’s test and prove that Eq. (1) is the maximum
value of pHardy allowed by quantum physics, irrespective of

the dimension; this is the analog of the Tsirelson bound
[30]. A remarkable consequence of our derivation consti-
tutes our second main result: any state that achieves Eq. (1)
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in the ideal test is equivalent, up to local isometries, to the
unique two-qubit state that achieves that violation. This is a
case of self-testing [5,31,32]—a protocol for testing quan-
tum systems and circuits that can lead to conclusive results
even when the devices employed are not trusted—the first
that detects a nonmaximally entangled state (see parallel
work in Ref. [33]). Finally, our third result is a proof that,
even for nonideal versions of Hardy’s test, there is no
practical advantage in using higher-dimensional systems.

Hardy’s test.—Let us briefly summarize Hardy’s test.
Consider two parties, say, Alice and Bob, each of which is
able to perform two possible measurements, x ¼ fA0; A1g
and y ¼ fB0; B1g, respectively, on its part of a shared
physical system. Each measurement has two mutually
exclusive outcomes, labeled by a ¼ f�1g, for the measure-
ments of Alice, and b ¼ f�1g, for the ones of Bob (Fig. 1).
The situation considered by Hardy assumes the three con-
straint probabilities

pðþ;þjA0; B0Þ ¼ 0; (2a)

pðþ;�jA1; B0Þ ¼ 0; (2b)

pð�;þjA0; B1Þ ¼ 0: (2c)

Suppose there are measurement devices and physical sys-
tems such that these three equations are fulfilled. If this
setup can be described by a local realistic theory, then it
follows that

pHardy � pðþ;þjA1; B1Þ ¼ 0: (3)

Hardy realized that, in quantum mechanics, there are mea-
surements and a particular state of a two-qubit system such
that the constraint probabilities are fulfilled while Hardy’s
probability is nonzero, leading to a so-called paradox.
Extending the analysis to all possible measurements and
states, Hardy later showed that the maximum value of

pHardy for systems of two qubits is ð5 ffiffiffi
5

p � 11Þ=2. A brute

force calculation proved that this value cannot be exceeded
using two three-dimensional systems [19]. Here, we prove
that this value is device-independent, that is, it is optimal
for bipartite quantum systems of any dimension.

Theorem 1.—The maximum value of Hardy’s probabil-
ity for quantum systems of arbitrary finite dimension is

pHardy ¼ ð5 ffiffiffi
5

p � 11Þ=2, just as for qubits.
Proof.—In quantum mechanics, joint probabilities for

the outcomes of measurements performed on spacelike
separated parts of a quantum system are given by

pða; bjx; yÞ ¼ Trð��ajx ��bjyÞ; (4)

where � is the state of the system and �ajx, �bjy are the

measurement operators associated to outcomes a, b of
measurements x, y, respectively. The latter operators are
positive operator-value measure effects, in general; how-
ever, since we do not set any constraint on the dimension
of the Hilbert space, Neumark’s theorem allows us to
consider only projective measurements, without loss of
generality. The core of the proof exploits the following
lemma, proven in Ref. [34]:
Lemma 1.—Given two Hermitian operators A0 and A1

with eigenvalues�1 acting on a Hilbert space H , there is
a decomposition ofH as a direct sum of subspacesH i of
dimension d � 2 each, such that both A0 and A1 act within
each H i, that is, they can be written as A0 ¼ �iA

i
0 and

A1 ¼ �iA
i
1, where A

i
0 and Ai

1 act on H i.

Let then A0 ¼ �þjA0
���jA0

and A1¼�þjA1
���jA1

,

where �ajx are projection operators. It follows from

Lemma 1 that �ajx ¼ �i�
i
ajx, where each �i

ajx acts on

H i, for all a and x; we also denote �i ¼ �i
þ1jx þ�i

�1jx
the projector on H i. Needless to say, Lemma 1 is also
valid on Bob’s side; we use analog notations for Bob’s
operators. With these notations,

pða; bjx; yÞ ¼ X
i;j

qijTrð�ij�
i
ajx ��j

bjyÞ; (5a)

� X
i;j

qijpijða; bjx; yÞ; (5b)

where qij¼Trð��i��jÞ and �ij¼ð�i��j��i��jÞ=
qij is, at most, a two-qubit state. Since qij � 0 for all i, j

and
P

i;jqij ¼ 1, the constraint probabilities [Eq. (2)] are

satisfied for p if, and only if, they are satisfied for each of
the pij. But, then,

pðþ;þjA1; B1Þ ¼
X
i;j

qijpijðþ;þjA1; B1Þ (6)

is a convex sum of Hardy’s probabilities in each two-qubit
subspace [35]. As a convex sum, it is less or equal to the
largest element in the combination, whose maximum value
is known to be given by Eq. (1). This concludes the
proof [36]. h
Hardy’s test leads to self-testing.—It follows from the

previous proof that pðþ;þjA1; B1Þ reaches its maximal
value if and only if pijðþ;þjA1; B1Þ is maximal for every

ij such that qij � 0. The following Lemma, proved in

Refs. [10,11], states that only a very specific class of
two-qubit states can lead to this maximal value:
Lemma 2.—Consider Hardy’s test implemented in a two-

qubit system, and let A0 ¼ B0 ¼ j0ih0j � j1ih1j. The
probability pHardy reaches its maximal value if, and only

if, the state of the system is

j�i ¼ aðj01i þ j10iÞ þ ei�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a2

p
j11i; (7)

a

y

b

x

FIG. 1 (color online). Schematic diagram for the Hardy’s test
scenario.
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and the other two measurements are A1¼B1¼
jþihþj�j�ih�j with jþi ¼ 1ffiffiffiffiffiffiffiffiffi

1�a2
p ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a2

p
j0i �

ei�aj1iÞ, a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� ffiffiffi

5
p Þ=2

q
, and � is arbitrary.

In view of this, one can conjecture that, if the maximal
value of pHardy is observed, the state must somehow be a

direct sum of copies of j�i. We proceed to prove that this is
indeed the case:

Theorem 2.—If pHardy ¼ ð5 ffiffiffi
5

p � 11Þ=2 is observed in an
ideal Hardy’s test [i.e., together with Eq. (2)], then the state
of the system is equivalent up to local isometries to
j�iAB � j�iA0B0 , where j�i is given in Eq. (7)and j�i is
an arbitrary bipartite state. In other words, the ideal
Hardy’s test constitutes a self-testing of j�i.

Proof.—Without loss of generality, let us choose the
eigenbases of A0 and B0 as the computational bases:

�i
þjA0

¼j2iih2ij, �i
�jA0

¼j2iþ1ih2iþ1j, �j
þjB0

¼
j2jih2jj, and �j

�jB0
¼ j2jþ 1ih2jþ 1j. Then, by

Lemma 2, pijðþ;þjA1; B1Þ ¼ Trð�ij�
i
þjA1

� �j
þjB1

Þ ¼
ð5 ffiffiffi

5
p � 11Þ=2 if, and only if, �ij ¼ j�ijih�ijj, where

j�iji ¼ aðj2i; 2jþ 1i þ j2iþ 1; 2jiÞ
þ ei�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a2

p
j2iþ 1; 2jþ 1i; (8)

and a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� ffiffiffi

5
p Þ=2

q
and arbitrary �. This way, a state jc i

can lead to a maximal value of pHardy if, and only if, it is

given by

jc i ¼ M
i;j

ffiffiffiffiffiffi
qij

p j�iji: (9)

The coefficients qij are arbitrary probabilities that, by defi-

nition, are constrained to the form qij ¼ risj, where ri,

sj � 0 and
P

iri ¼
P

jsj ¼ 1. The angle � cannot depend

on the indices i, j because �i
þjA1

is uniquely defined by �

(cf. Lemma 2), and, by definition, is independent of j; the

same reasoning can be applied to �j
þjB1

. Now, following

Ref. [5], we append local ancilla qubits prepared in the state
j00iA0B0 and look for local isometries �A and �B such that

ð�A ��BÞjc iABj00iA0B0 ¼ j�iABj�iA0B0 ; (10)

where j�i is a bipartite junk state. This can, indeed, be
achieved for �A ¼ �B ¼ � defined by the map

�j2k; 0iCC0 � j2k; 0iCC0 ; (11a)

�j2kþ 1; 0iCC0 � j2k; 1iCC0 ; (11b)

for both C ¼ A, B.
Up to now, self-testing was known only for maximally

entangled states (see, e.g., Ref. [5] and references therein).
A parallel, independent work by Yang and Navascués [33]
provides a very general approach to the self-testing of
bipartite nonmaximally entangled states. Remarkably,
though, our Hardy point is not detected by that test [37].

Hardy’s experiment with realistic constraints.—Suppose
now that the constraint probabilities [Eq. (2)] in Hardy’s
experiment are not exactly equal to zero. In this case, the
local bound on Hardy’s probability is no longer zero,
either, in general, it is given by the following inequality
[26,27]:

pðþ;þjA1; B1Þ � pðþ;þjA0; B0Þ þ pðþ;�jA1; B0Þ
þ pð�;þjA0; B1Þ: (12)

This inequality is a rewriting of the CH inequality [29],
which is not surprising, since the CH inequality is the only
relevant criterion for nonlocality in a scenario with two
parties, two inputs, and two outcomes. In other words, as
noticed in Ref. [28], Hardy’s experiment turns out to be a
study of the violation of the CH inequality under further
constraints about the values of some probabilities.
Let us now set

pðþ;þjA0; B0Þ � �; (13a)

pðþ;�jA1; B0Þ � �; (13b)

pð�;þjA0; B1Þ � �; (13c)

for some � � 0 [38]. The local bound on Hardy’s proba-
bility becomes

pðþ;þjA1; B1Þ � 3�: (14)

For � � 1
3 , the bound is trivial and quantum physics cer-

tainly cannot violate it, while for 0 � � < 1
3 , quantum

physics may lead to a violation of the local bound. As
before, we want to assess the maximal quantum violation
in a device-independent scenario, i.e., without making any
assumption on the Hilbert space dimension. The previously
stated theorem cannot be extended, so we take a different
approach: first, we use semidefinite programs to obtain an
upper bound on Hardy’s probability, using the method of
Navascués, Pironio, and Acı́n [39]; second, by considering
two-qubit systems, we obtain a value that is certainly
achievable with quantum systems. By noticing that the
values thus obtained coincide, we conclude that we have
obtained the optimal value for Hardy’s probability, and that
this value can be reached with two-qubit systems.
In detail, let Q be the set of quantum joint probability

distributions, that is, vectors of probabilities of the form
[Eq. (4)], for all a, b, x, y. We compute a device-
independent upper bound on Hardy’s probability by opti-
mizing it, not over quantum probabilities in the set Q, but
over a larger set of probabilities that is computationally
tractable—as opposed to Q, that still lacks a better char-
acterization. This set is one of an infinite hierarchy of sets
Q1 	 Q2 	 . . . 	 Qn 	 . . . , defined in terms of semi-
definite programs [39,40], proven to converge to the quan-
tum set, limn!1Qn ¼ Q. For several values of � in the
interval 0 � � � 1=3, we optimize Hardy’s probability
over the set Q3, enforcing the constraints [Eq. (13)]. The
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implementation was done in MATLAB using semidefinite
programming [41,42]. The results form the solid line in
Fig. 2. For the lower bound, we consider the most general
mixed states of two qubits and positive operator-value
measure elements acting on those. The maximal value of
the Hardy’s probability is estimated using constrained non-
linear optimization methods in MATLAB. These methods
are not guaranteed to converge to global maxima, though,
and are in fact rather sensitive to seed conditions; each
point on the dotted line in Fig. 2 is the maximum obtained
over 104 runs, with random initial seeds.

The computed lower and upper bounds for Hardy’s
probability differ, at most, by values of order 10�2; in the
region � & 0:2 (where any experiment that aims at imple-
menting Hardy’s test will have to be), this difference is of
order 10�6. This proves that there is no advantage in using
higher-dimensional systems, as compared to two-qubit
systems, even in the presence of imperfections.

Conclusion.—In this Letter, we prove that the maximum
value of Hardy’s probability found for two-qubit systems,

ð5 ffiffiffi
5

p � 11Þ=2, is the maximum one allowed by quantum
theory, irrespective of the dimension of the system and of
the measurements performed, that is, independent of the
devices used. By showing that only a certain class of states
can lead to such maximal value, we show that Hardy’s test
is, in fact, a self-testing protocol for such states. Extending
the first results to a nonideal version of Hardy’s test, where
the constraint probabilities are no longer equal to zero, we
compute device-independent upper bounds on Hardy’s
probability, in terms of the error parameter, and show
that this bound is saturated by two-qubit systems.

Despite their fundamental importance, as the first proven
analogue of Tsirelson’s bound for Hardy’s test, the results
here presented also serve as a guideline for future experi-
mental implementations, as they show that there is no
advantage in using higher dimensional systems, as com-
pared to two-qubit systems.
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[42] J. Löfberg, in YALMIP: A Toolbox for Modeling and

Optimization in MATLAB, Proceedings of the CACSD
Conference, Taipei, Taiwan, 2004 (IEEE, Piscataway,
NJ, 2004).

PRL 109, 180401 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

2 NOVEMBER 2012

180401-5

http://dx.doi.org/10.1103/PhysRevLett.97.050503
http://dx.doi.org/10.1088/1367-2630/10/7/073013
http://dx.doi.org/10.1088/1367-2630/10/7/073013
http://dx.doi.org/10.1080/10556789908805766

