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By means of nuclear spin-lattice relaxation rate T�1
1 , we follow the spin dynamics as a function of the

applied magnetic field in two gapped quasi-one-dimensional quantum antiferromagnets: the anisotropic

spin-chain system NiCl2-4SCðNH2Þ2 and the spin-ladder system ðC5H12NÞ2CuBr4. In both systems, spin

excitations are confirmed to evolve from magnons in the gapped state to spinons in the gapless Tomonaga-

Luttinger-liquid state. In between, T�1
1 exhibits a pronounced, continuous variation, which is shown to

scale in accordance with quantum criticality. We extract the critical exponent for T�1
1 , compare it to the

theory, and show that this behavior is identical in both studied systems, thus demonstrating the universality

of quantum-critical behavior.
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Quantum phase transitions are currently in the focus of
condensed-matter physics [1–4]. In contrast to classical
phase transitions, driven by thermal fluctuations, quantum
phase transitions are driven by quantum fluctuations
that can be tuned by nonthermal control parameters, like
the magnetic field, pressure or chemical composition. The
influence of a quantum-critical point (QCP), where the
continuous quantum phase transition occurs at zero tem-
perature, extends to a broad V-shaped region of quantum
criticality at nonzero temperatures (like in Fig. 1). A com-
plex physics in this region is universal, i.e., insensitive
to the microscopic properties of the system, and scale
invariant, with temperature setting the only energy scale.
Quantum phase transitions have been experimentally
studied in heavy-fermion metals [4,5], magnetic insulators
[6–9], and cold atoms [10,11]. Magnetic insulators exhibit
relatively simple and well-defined Hamiltonians and allow
for powerful local probes accessing spin statics and dy-
namics, like neutron scattering [7–9] and nuclear magnetic
resonance (NMR) [12]. Nevertheless, a clear experimental
demonstration of the quantum-critical behavior in mag-
netic insulators is still missing.

Particularly convenient are systems of weakly coupled
one-dimensional (1D) gapped antiferromagnets [13], like
spin chains or ladders, for two reasons. First, the applied
magnetic field B simply controls the gap between the
ground state and the lowest spin excitations, i.e., magnons.
If � is the zero-field gap, this gap closes at the critical field
Bc1 ¼ �=ðg�BÞ, which defines the QCP (�B is Bohr mag-
neton). Beyond this QCP, magnons fractionalize into pairs

of spinons [8], characteristic of the gapless, Tomonaga-
Luttinger-liquid (TLL) ground state [12,14]. Second,
weakly coupled spin chains or ladders feature well sepa-
rated temperature scales relevant for the physics in 3D
and 1D. These are characterized, respectively, by the cor-
responding weak, 3D exchange couplings J3D and the
dominant, 1D exchange coupling J (Fig. 1). In particular,
in the temperature range kBT < J3D (kB is Boltzmann
constant), 3D couplings lead to the 3D ordered state in
the TLL region [12]. In the range J3D < kBT < J, the

FIG. 1 (color online). Characteristic field-temperature phase
diagram of weakly coupled, gapped antiferromagnetic chains or
ladders around the critical field Bc1 that closes the gap. The
slopes�g�B and 0:76g�B [15] of the temperature crossovers to
the gapped and TLL regions, respectively, are indicated by
dashed lines. Dotted lines indicate characteristic temperature
scales set by the dominant, 1D coupling J and weak, 3D
couplings J3D.
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physics gradually becomes 1D, while above J the 1D
identity of the system is lost. As sketched in Fig. 1, cross-
over temperatures to both the gapped and TLL regions
depend linearly on B� Bc1 around the QCP [15].
They outline a characteristic V-shaped quantum-critical
region in the field-temperature phase diagram [16]. Spin
dynamics in this region has not been systematically
explored yet.

We explore the quantum-critical spin dynamics in two
particularly clean and convenient model systems:
NiCl2-4SCðNH2Þ2 (DTN) containing chains of S ¼ 1 spins
subject to a single-ion anisotropy [17–19], and
ðC5H12NÞ2CuBr4 (BPCB) containing spin-1=2 ladders
[8,12,16,20,21]. Both compounds feature experimentally
accessible critical fields, while the crystal symmetry as-
sures the absence of the antisymmetric Dzyaloshinskii-
Moriya interaction that could perturb the closing of the
gap at the QCP. In the strong-coupling approximation [12],
where only the two spin states that close the gap are kept
(among four rung states for the ladder and three spin states
for the chain), both systems are described by the same
effective spin-1=2 XXZ chain model with the coupling
anisotropy JZ=JX;Y ¼ 0:5. Accordingly, they exhibit a

similar phase diagram, which also contains the second
QCP at the critical field Bc2 that separates the gapless state
from a gapped, fully polarized state [8,12,16,18–21].
While the 1D couplings are comparable in both com-
pounds, their 3D couplings differ by an order of magnitude
(Table I). A comparison of the quantum-critical behavior in
both compounds thus offers a severe test of universality.
Indeed, our results allow us to demonstrate (i) the univer-
sality and (ii) scale invariance of the quantum-critical
spin dynamics, and (iii) extract the critical exponent for
the nuclear spin-lattice relaxation rate T�1

1 , which is com-

pared to the existing theoretical predictions [22].
The T�1

1 measurements allow us to monitor the spin

dynamics around the QCP in both compounds to high
precision and in great detail. Namely, T�1

1 can cover

many orders of magnitude keeping the same precision,
while the magnetic field B as a tuning parameter can be
easily controlled. T�1

1 provides a direct access to the low-

energy spin excitations, as it probes the nearly zero-energy
limit of the local (i.e., momentum integrated) spin-spin

correlation function [23]. Figure 2 shows T�1
1 ðTÞ data

sets for various magnetic field values around the QCP. In
BPCB, the data sets taken around Bc1 exhibit a power-law
behavior, T�1

1 / T� (i.e., they are linear in a log-log scale),

over nearly a decade [Fig. 2(a)]. The exponent � varies
rapidly across the critical field, resulting in a fanlike pat-
tern of the data. At low temperature, the power-law (i.e.,
linear) behavior is modified at the lowest field value by the
gap opening, which reduces T�1

1 , and at the two highest

field values by the 3D critical fluctuations, which enhance
T�1
1 close to the boundary TcðBÞ of the 3D ordered state

[12]. At high temperature, the deviation from the power-
law behavior starts above 0.3 K, where the data sets at
lower fields start to level off. Because of the low Bc1 value
in DTN, the T�1

1 ðTÞ data are instead taken around Bc2, and

they exhibit essentially the same power-law fanlike pattern
as in BPCB [Fig. 2(b)], although limited to a narrower
temperature range below 4 K. Above this temperature,
which is comparable to J in DTN (Table I), the relaxation
starts to increase to the high-temperature paramagnetic
regime. The low-temperature behavior again reflects enter-
ing into the gapped, this time the fully polarized region at
the high field values, while the divergence of relaxation
at the low field values, close to TcðBÞ, is not visible, as the
lowest covered temperature of 1.5 K is not close enough to
the 3D ordered state [Tcð10 TÞ ¼ 0:9 K].
The limits of this fanlike pattern in Figs. 2(a) and 2(b) are

easily understood and reflect the nature of the low-energy
spin excitations on each side of the QCP. Namely, in the
gapless, TLL region, the two-spinon continuum in a dy-
namic correlation function leads to the power-law behavior

T�1
1 / T1=ð2KÞ�1, where K is the TLL exponent [12,24].

Approaching the QCP from the TLL side, K gradually
increases to 1, meaning that � ¼ 1=ð2KÞ � 1 decreases to
�1=2, which is the lowest expected value of�. As indicated
by the upper gray lines in Figs. 2(a) and 2(b), this lowest �
value is indeed observed just aboveBc1 in BPCB, for kBT >
J3D, and just below Bc2 in DTN. In the gapped region,
magnon excitations over the gap result in an activated
behavior T�1

1 / T�0 exp½�g�BðB� Bc1;2Þ=ðkBTÞ�, where
g ¼ 2:176 for BPCB [12] and 2.26 for DTN [19], theþ sign
refers to Bc1 and� to Bc2. The exponent�0 depends on the
effective dimension of the magnon dispersion relation as
selected by thermal fluctuations kBT (Refs. [25,26]). On
raising the temperature, �0 gradually decreases from 2 for
kBT < J3D (3D case) towards 0 for J3D � kBT < J (1D
case). The T�1

1 ðTÞ data sets deepest in the gapped region

indeed exhibit this type of low-temperature behavior, with
�0 ¼ 1:8 for BPCB (calculated at 0.05K) and 0.83 for DTN
(calculated at 2 K) [26], as shown by the lower gray lines
in Figs. 2(a) and 2(b). In between the gapped and TLL
regions neither description applies, implying that in the
white region of Fig. 1 spin excitations are neither spinons
nor magnons. Interestingly, these excitations lead approxi-

mately to T�1
1 / T1=2 exactly at the critical field in both

TABLE I. The exchange couplings in the effective spin-1=2
XXZ chain model for BPCB (DTN): on-site coupling J0 is the
rung coupling J? (single-ion anisotropy D), 1D coupling J is
the leg coupling Jk (intrachain coupling 2Jc), 3D coupling J3D is

the interladder coupling zJ0 with z ¼ 4 (interchain coupling
zJa;b with z ¼ 4), and the highest transition temperature Tmax

c

to the 3D ordered state, all in kelvin units [12,19].

J0 J J=J0 J3D Tmax
c

BPCB 12.9 3.6 0.28 0.08 0.11

DTN 8.9 4.4 0.49 0.72 1.2
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compounds, as indicated by the middle gray lines in
Figs. 2(a) and 2(b).

To show that spin excitations in the white region of
Fig. 1 are characteristic of quantum criticality, we establish
a scaling relation for the T�1

1 data in this region. Assuming
that T�1

1 and the parameter controlling the proximity to a
QCP, �ðB� Bc1;2Þ, scale as powers � and � of tempera-

ture, the scaling relation reads

T�1
1

T� ¼ F

��ðB� Bc1;2Þ
T�

�
; (1)

where F is the scaling function. To check Eq. (1), we first
focus on DTN. We crop the ranges of the T�1

1 ðTÞ data sets
by the constraints g�BjB� Bc2j< 0:5kBT and T < 4 K to
confine them well to the quantum-critical region where
the power-law behavior is observed. Then we look for
the values of the exponents � and � leading to the best
collapse of the cropped data sets on the same curve in
scaling variables�ðB� Bc2Þ=T� and T�1

1 =T�. For a given
pair of � and � values, we fit the data set containing all the
cropped and scaled data sets by the appropriate analytical
function, a third-order polynomial in our case, and use the
�2 of this fit as a measure of the collapse. As shown in the
inset of Fig. 3, the minimization of �2 as a function of both
exponents leads to � ¼ 0:46� 0:12 and � ¼ 1:00� 0:24.
A corresponding excellent collapse of all the data sets on

FIG. 2 (color online). T�1
1 as a function of temperature T for several magnetic field values around the QCP. (a) In BPCB, 14N T�1

1

data are taken around Bc1 ¼ 6:723 T on Nð1ÞII NMR lines as defined in Ref. [12]. The value of Bc1 is determined from the low-
temperature magnetization as measured by 14N NMR hyperfine shift. (A more precise determination provides a slightly higher value
than reported in Ref. [12].) (b) In DTN, proton T�1

1 data are taken around Bc2 ¼ 12:325 T on the highest-frequency NMR line.

Magnetic field is aligned with the c axis to within 1�. The value of Bc2 is determined from the low-temperature boundary TcðBÞ of the
3D ordered state as measured by proton NMR [31]. Thick gray lines in (a) and (b) are T�1

1 ðTÞ predictions for the TLL behavior close to

the critical field (T�1
1 / T�1=2), for the tentative quantum-critical behavior exactly at the critical field (T�1

1 / T1=2), and for the gapped

behavior, from top to bottom, respectively.

FIG. 3 (color online). Demonstration of the scale invariance in
the quantum-critical region of DTN. The best collapse of differ-
ent T�1

1 ðTÞ data sets [displayed in Fig. 2(b)] on the same curve in

scaling variables �ðB� Bc2Þ=T� and T�1
1 =T� is obtained for

the critical exponents � ¼ 0:46� 0:12 and � ¼ 1:00� 0:24,
with mean values used in the plot. Inset shows the color plot of
�2ð�;�Þ measuring the goodness of this collapse. Obtained
mean values are indicated by solid white lines, their uncertainties
are given by a standard deviation � (dashed white contour line).
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the same curve, shown in Fig. 3, provides a nice demon-
stration of scale invariance. The energy scale is set only by
temperature, and the obtained linear scaling of the control
parameter �ðB� Bc2Þ with temperature (i.e., � ¼ 1) is a
clear sign of quantum criticality [1–3]. The same analysis
for BPCB, with T�1

1 ðTÞ data sets confined to the range

between 0.1 K (� J3D=kB) and 0.3 K, gives similar values,
� ¼ 0:48� 0:06 and � ¼ 1:04� 0:08. In both cases,
Eq. (1) gives T�1

1 / T� with the critical exponent

� � 1=2 exactly at the critical field. This result differs
from the existing theoretical predictions for the 3D quan-
tum criticality, � ¼ 3=4, and for the 1D quantum critical-
ity, � ¼ �1=2, both given in Ref. [22]. In the white region
in Fig. 1, the first case applies to the range kBT < J3D. This
region separates the gapped state from the 3D ordered
state, which can be understood as a Bose-Einstein conden-
sate (BEC) of magnons [24,27,28]. The second case ap-
plies to the range J3D � kBT < J, where the effect of J3D
is negligible. However, our result applies to the middle of
the range J3D < kBT < J, which has not been theoretically
described yet.

Finally, we show that the similarity of the T�1
1 fanlike

patterns in both compounds is not only qualitative but also
quantitative. For this purpose, from the data displayed in
Fig. 2 we extract the field variations of T�1

1 and of the

(effective) power-law exponent � ¼ @ðlnT�1
1 Þ=@ðlnTÞ at

a given temperature. Having established �ðB� Bc1;2Þ=T
as the proper scaling variable in the quantum-critical
region, we plot in Fig. 4 T�1

1 and � in DTN as a function

of this variable at TDTN ¼ 2 K. Strong variations of both
observables are localized in a narrow range around the
QCP, where T�1

1 increases by a factor of 10 and � changes

from 1.5 to �0:5 from the gapped to the TLL region.
Outside the quantum-critical region, the observed �
versus �ðB� Bc1;2Þ=T variation is nicely reproduced

[see Fig. 4(b)] on the basis of T�1
1 expressions given above:

with � ¼ �g�BðB� Bc1;2Þ=ðkBTÞ þ �0 on the gapped

side, where �0 ¼ 0:83 (calculated at TDTN), and with
� ¼ 1=ð2KÞ � 1 on the TLL side, where we use KðBÞ in
the strong-coupling approximation [12]. In the quantum-
critical region, where neither description applies, we look
for the temperature TBPCB to achieve the best overlap of
the T�1

1 and � data sets for BPCB with those for DTN.

As shown in the inset of Fig. 4(b), the obtained TBPCB ¼
0:18 K leads to TDTN=TBPCB ¼ 11. We get the same ratio
for any chosen TDTN in the covered temperature range. An
excellent overlap of the BPCB data sets with those for
DTN, despite different exchange couplings defining their
Hamiltonians (Table I), provides a clear demonstration of
universality. Spin dynamics in the quantum-critical region
can be understood in terms of strongly interacting magnons
[22]. The characteristic temperature for the magnon-
magnon interaction is given by the highest transition
temperature Tmax

c to the 3D ordered (i.e., BEC) state (see
Fig. 1 and Table I). The fact that Tmax

c;DTN=T
max
c;BPCB ¼ 11

precisely corresponds to the obtained TDTN=TBPCB indi-
cates that the universality is defined by an interaction-
dependent scale factor [13,29]. In the end, we note that a
data set like those plotted in Fig. 4(a) was obtained for the
spin-chain compound CuPzN in Ref. [30], but was inter-
preted within the TLL framework, which does not apply to
the quantum-critical region.
In summary, we showed that the quantum-critical spin

dynamics in gapped quasi-1D antiferromagnets cannot be
understood in terms of spinons or magnons, but rather in
terms of more complicated spin excitations. Their behavior
was experimentally demonstrated to be scale invariant and
universal, where the scale factor is defined by the magnon-
magnon interaction. We extracted the critical exponent
for T�1

1 in the region which is not covered by any theory.

For the well developed 3D region at lower temperatures
(kBT � J3D) and for the 1D region at higher temperatures
(J3D � kBT < J), theoretical descriptions exist [13,22].
As T�1

1 can be expressed in terms of the dynamical sus-

ceptibility [23], the extension of our experimental study
to these regions should allow us to extract the universal

FIG. 4 (color online). Demonstration of the universality of
quantum-critical behavior. (a) T�1

1 versus �ðB� Bc1;2Þ=T data

sets for BPCB at 0.18 K and DTN at 2 K [determined from the
data in Figs. 2(a) and 2(b)] overlap perfectly in the quantum-
critical region. (b) Corresponding overlap of the � data sets,
where the power-law exponents � are evaluated as the slopes of
tangents to the T�1

1 ðTÞ data sets in a log-log scale. Inset shows

the �2ðTBPCBÞ plot measuring the goodness of this overlap at a
fixed TDTN ¼ 2 K, defining the optimal TBPCB ¼ 0:18 K (indi-
cated by the dashed line). Dashed lines in (a) and (b) indicate the
crossover temperatures to the gapped (blue) and TLL (red)
regions, as in Fig. 1, and the green lines in (b) are � versus
�ðB� Bc1;2Þ=T predictions in these two regions. Different T�1

1

scales in (a) are due to different gyromagnetic ratios and differ-
ent NMR hyperfine couplings for 14N and protons.
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critical exponents for susceptibility and correlation length
in 1D and 3D, and compare them to existing theories.
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[7] Ch. Rüegg, B. Normand, M. Matsumoto, A. Furrer, D. F.
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