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The three-dimensional Edwards-Anderson and mean-field Sherrington-Kirkpatrick Ising spin glasses

are studied via large-scale Monte Carlo simulations at low temperatures, deep within the spin-glass phase.

Performing a careful statistical analysis of several thousand independent disorder realizations and using an

observable that detects peaks in the overlap distribution, we show that the Sherrington-Kirkpatrick and

Edwards-Anderson models have a distinctly different low-temperature behavior. The structure of the

spin-glass overlap distribution for the Edwards-Anderson model suggests that its low-temperature phase

has only a single pair of pure states.
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Spin glasses [1] have been the subject of intense study
and controversy for decades. These models are perhaps the
simplest, physically motivated examples of frustrated sys-
tems in classical statistical mechanics. Given their wide
applicability across disciplines, it is important that their
behavior is understood. Despite four decades of research,
the low-temperature phase of short-range spin glasses is
poorly understood. Here, we study both the three-
dimensional (3D) Edwards-Anderson (EA) Ising spin glass
model [2] and the Ising spin glass on a complete graph—
known as the Sherrington-Kirkpatrick (SK) model [3]—in
an effort to gain a deeper understanding of the low-
temperature spin-glass state. Our results suggest that these
models are qualitatively different at low temperatures.

Parisi’s solution of the SK model [4,5] involves an
unusual form of symmetry breaking among replicas.
These were originally introduced to carry out the disorder
average of the logarithm of the partition function. The low-
temperature phase of the model within the replica symme-
try breaking (RSB) solution [4,5] has several unusual
features such as the breakdown of self-averaging and the
coexistence of a countable infinity of pure states in the
thermodynamic limit.

There is no analytic theory for the EA model, but it is
well accepted on the basis of numerical simulations [6] that
the EA model undergoes a continuous phase transition.
However, the low-temperature broken-symmetry phase is
not understood, even qualitatively. Different mutually ex-
clusive scenarios have been proposed: the RSB picture is
based on an analogy with the solution of the SK model. It
assumes that self-averaging breaks down, and that there are
a countable infinity of pure states in the thermodynamic
limit. A qualitatively different and simpler picture was
proposed to describe the EA model by McMillan and
Fisher and Huse, as well as Bray and Moore [7–11]. In
the ‘‘droplet scaling’’ picture, the low-temperature phase is

described by one pair of pure states related by a spin flip
with low-lying excitations that are isolated, compact drop-
lets of the opposite phase. A central difference between the
RSB and droplet pictures for the EA model lies in whether
there is a single pair of pure states or many pairs of pure
states for large systems (see Fig. 1).
Newman and Stein [12–14] explained that the usual way

of constructing the thermodynamic limit cannot be applied
to finite-dimensional spin glasses because of the possibility
of a chaotic system-size dependence in which different
thermodynamic states may appear for different system
sizes. They showed that the key ideas of RSB—nonself-
averaging and a countable infinity of pure states—cannot
hold for the EA model within the naı̈ve way that they were
first proposed. However, their results do not completely
rule out a nonstandard interpretation of RSB. They also
proposed a more plausible many-states ‘‘chaotic pairs’’
picture, in which, for a fixed choice of couplings, there
are many pure states, but in a single finite volume only one
pair is manifest.
Here, we report the results of large-scale Monte Carlo

simulations of both the SK and EA models. Our objective
is to shed light on the qualitative nature of the low-
temperature phase of the EA model by comparing and

FIG. 1 (color online). (a) In the droplet picture, PðqÞ is trivial
with one pair of pure states. (b) In the RSB picture, individual
samples have many pairs of pure states [� functions in PJ ðqÞ].
(c) In the RSB picture, PðqÞ is nontrivial (continuous support for
jqj< qEA).
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contrasting with the SKmodel. Previous numerical studies,
e.g., Ref. [15] using the average spin overlap distribution,
suggested that both the SK and EA models are well
described by the RSB picture. However, for the numeri-
cally accessible system sizes, the two main peaks are still
converging to �qEA, and therefore the results might be
plagued by finite-size effects. On the other hand, studies of
the link overlap [15] distribution suggest agreement with
the droplet picture. The ‘‘trivial-nontrivial’’ scenario
[15–17] reconciles these numerical results by postulating
that excitations are compact, as in the droplet picture, but
their energy cost is independent of system size, as in the
RSB picture. In an effort to resolve these discrepancies, we
introduce here a statistic obtained from the spin overlap
distribution, which detects sharp peaks in individual
samples, inspired by a recent study on the SK model
[18]. This statistic clearly differentiates the RSB and drop-
let pictures: it converges to zero in the large-volume limit if
there is a single pair of pure states and to unity if there are
countably many. Our results for this quantity show clear
differences between the EA and SK models.

Models and Numerical Details.—The SK and EA mod-
els are defined by the Hamiltonian H ¼ �P

N
i;j¼1 JijSiSj,

with Si 2 f�1g Ising spins. For the EA model, the sum is
over the nearest neighbors on a cubic lattice of sizeN ¼ L3

with periodic boundaries. The couplings Jij are chosen

from a Gaussian distribution with zero mean and variance
unity. A set of couplings J ¼ fJijg defines a disorder

realization or, simply, a ‘‘sample.’’ For the SK model, the
sum is over all the pairs of spins, and the Jij are chosen

from a Gaussian distribution with zero mean and variance
1=ðN � 1Þ.

The ordering in spin glasses is detected from the spin

overlap q ¼ ð1=NÞPiS
�
i S

�
i , where ‘‘�’’ and ‘‘�’’ indicate

independent spin configurations for the same sample J .
The primary observable we consider for fixed J and N is
the overlap probability density, PJ ðqÞ. In the high-

temperature phase, there is a well-defined thermodynamic
limit, and PJ ðqÞ ! �ðqÞ for N ! 1 for almost every J .

The behavior of PJ ðqÞ for large N and T < Tc, Tc the

critical temperature, distinguishes the RSB picture from
other theories. If there is only a single pair of states for each
system size, PJ ðqÞ consists for a large N of a symmetric

pair of � functions at the EA order parameter q ¼ �qEA
[see Fig. 1(a)]. In the RSB picture, there are many
sharp peaks symmetrically distributed in the range
�qEA < q< qEA, as shown in Fig. 1(b), corresponding
to multiple pairs of pure states. In the RSB picture, the
distribution of peaks depends on J , but the disorder-
averaged overlap distribution PðqÞ exists, and for large N
is expected to take the form shown in Fig. 1(c).

We have carried out replica exchange Monte Carlo [19]
simulations of both models. The parameters are shown
in Tables I and II. For each sample, we equilibrate two
independent sets of replicas to compute the overlap

distribution. Equilibration is tested for the EA and SK
models using the methods of Refs. [15,20], respectively.
The number of equilibration and data collection sweeps are
chosen to be long enough to ensure that the samples are
well equilibrated and that PJ ðqÞ is accurately measured for
each sample. We report the results for T ¼ 0:42 (T ¼
0:4231Þ for the EA (SK) model. For the EA model,
Tc � 0:96 [6], while for the SK model Tc ¼ 1; so our
simulations are at �0:4Tc, i.e., deep within the spin-glass
phase [21] where critical fluctuations are unimportant.
Results.—Figure 2 shows PJ ðqÞ for three different EA

samples (N ¼ 512 ¼ 83, T ¼ 0:42). Note that PJ ðqÞ
varies considerably between the samples. Qualitatively
similar overlap distributions are seen for the SK model.
The left panel [right panel] of Fig. 3 shows the disorder
averaged overlap distribution PðqÞ for the EA [SK] model
for different system sizes at T ¼ 0:42 [T ¼ 0:4231] [22].
At this low temperature, PðqÞ consists of large peaks at the
finite-size value of the EA order parameter,�qEAðNÞ. PðqÞ
is reasonably flat, nonzero, and nearly independent of N in
the approximate range �0:4 & q & 0:4 for the sizes
studied here. We can quantify this observation by consid-
ering the integrated overlap Iðq0Þ ¼

R
jqj<q0

PðqÞdq.
Figure 4 shows Ið0:2Þ as a function of N for both the EA
and SKmodels at T � 0:4Tc [21]. Note that Ið0:2Þ is nearly
independent of N. We found qualitatively similar results
for other values of q0 up to q0 � 0:5 and temperatures
down to 0:2Tc for smaller systems. The constancy of
Ið0:2Þ has been observed in a number of studies (see

TABLE II. Simulation parameters for the SK spin glass. See
Table I for details.

N b Tmin Tmax NT Nsa

64 22 0.2000 1.5000 48 5068

128 22 0.2000 1.5000 48 5302

256 22 0.2000 1.5000 48 5085

512 18 0.2000 1.5000 48 4989

1024 18 0.2000 1.5000 48 3054

2048 16 0.4231 1.5000 34 3020

TABLE I. EA model simulation parameters. For each number
of spins N ¼ L3, we equilibrate and measure for 2b Monte Carlo
sweeps. Tmin [Tmax] is the lowest [highest] temperature and NT is
the number of temperatures. Nsa is the number of disorder
samples.

N L b Tmin Tmax NT Nsa

64 4 18 0.2000 2.000 16 4891

216 6 24 0.2000 2.000 16 4961

512 8 27 0.2000 0.2000 16 5130

1000 10 27 0.2000 0.2000 16 5027

1728 12 25 0.4200 1.8000 26 3257
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Refs. [15,23]) and is among the strongest evidence in favor
of the validity of the RSB picture for short-range systems.

Although Iðq0Þ in Fig. 4 is nearly constant over the range
of sizes simulated in this and other studies of the EA
model, it is also clear that, for these same sizes, there are
strong finite-size effects. These corrections can be seen by
looking at the size dependence of qEAðNÞ. The peak moves
to smaller values of qEA as N increases, similar to recent
results [23] for larger N. The presence of these strong
finite-size corrections makes the absence of any significant
N dependence of PðqÞ for small q surprising. In the droplet
picture, Iðq0Þ is expected to decay with a small power of L,
Iðq0Þ � TL�� (� � 0:2 in 3D [24]), and this slow asymp-
totic behavior may not set in until large sizes. Thus, the
behavior of Iðq0Þ shown in Fig. 4 may not be a sensitive
indicator of the nature of the low-temperature phase for
system sizes currently accessible to simulation.

To better understand the size dependence of the overlap
distributions, we go beyond disorder averages and consider
other statistics obtained from PJ ðqÞ. In particular, we

identify whether or not there is an emergence of � func-
tions in the range �qEA < q< qEA as N increases, which
would signal more than one pair of pure states. A finite-size
broadened � function at q is characterized by a large value
of PJ ðqÞ. To detect a �-function-like behavior for finite N,

we consider the statistic

�ðq0; �Þ ¼ Prob

�
maxjqj<q0

�
1

2
½PJ ðqÞ þ PJ ð�qÞ�

�
> �

�
:

(1)

The probability is defined with respect to J , and �ðq0; �Þ
is the fraction of samples with at least one peak greater than
� in PJ ðqÞ in the range jqj< q0; � is chosen to be large
enough to exclude some but not all samples. We refer to the
samples counted in �ðq0; �Þ as ‘‘peaked.’’ For example,
with � ¼ 1, the sample with the central peaks (black line)
in Fig. 2 is peaked for q0 * 0:1, whereas the two other
samples are not for q0 & 0:5.
The droplet and RSB pictures make dramatically differ-

ent predictions for�ðq0; �Þ. For the droplet or chaotic pairs
picture, there is only a single pair of states for any large
volume, so that �ðq0; �Þ ! 0 for any � > 0, and q0 < qEA
when N ! 1. However, for the RSB picture, one expects
� functions in PJ ðqÞ for any range of q; i.e., �ðq0; �Þ ! 1
as N ! 1 for any q0 and � > 0.
Figure 5 shows �ðq0; �Þ as a function of system size for

q0 ¼ 0:2 and 0.4, as well as for � ¼ 1 [25]. We found
qualitatively similar results for other values of q0 and �, as
well as for lower temperatures. Our most important obser-
vation is that the fraction of peaked samples �ðq0; �Þ is
nearly constant and small for the EA model, while�ðq0; �Þ
increases over the same range of N for the SK model [26].
The result for the SK model is expected from Parisi’s RSB
solution. The contrasting result for the EA model suggests
that the number of pure states does not grow with the
system size for low T, a result consistent with the droplet
and chaotic pairs pictures.
The difference in the behavior of � for the SK model in

comparison to the EA model might be explained by the
fact that peaks sharpen more quickly with N for the SK
than for the EA model (see Fig. 3 and Ref. [28]). To study
this effect, we compare � for the two values, q0 ¼ 0:2
and q0 ¼ 1, for each model separately. For q0 ¼ 1, � is

FIG. 2 (color online). Typical overlap distributions PJ ðqÞ for
three disorder realizations for the EA model with N ¼ 83 and
T ¼ 0:42.

FIG. 4 (color online). Disorder average of the weight of the
overlap distribution Ið0:2Þ as a function of N for T � 0:4Tc for
both the EA and SK models.

FIG. 3 (color online). Disorder-averaged overlap probability
distribution PðqÞ for different system sizes at T ¼ 0:42 and
T ¼ 0:4231 for the EA model (left) and SK model (right),
respectively.
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controlled by the peaks at �qEA and must converge to
unity for both models, because for N ! 1 the qEA peaks
become � functions. The left [right] panel of Fig. 6 shows
the contour plots of constant� for the EA [SK] model. The
horizontal axis is the logarithm of the number of spins, and
the vertical axis is the logarithm of �=�0, with �0 ¼ 0:5 for
q0 ¼ 0:2 and �0 ¼ 1:5 for q0 ¼ 1. The curves are lines of
constant � obtained from a linear interpolation of the data.
Each set of curves are equally spaced in � [29], with �
decreasing as � increases. The dashed contours are for
q0 ¼ 1 and thus include the qEA peaks. As expected, the
dashed contours are clearly increasing functions for both
models, although they rise more rapidly for the SK model
than for the EA model. The solid curves are the contours of
constant � for q0 ¼ 0:2. A close inspection of the data
reveals a qualitative difference between the two models.
For a large N and large �, the SK q0 ¼ 0:2 contours rise
more steeply than the corresponding q0 ¼ 1 contours,
suggesting not only that the peaks are sharpening but
also that the number of peaks is increasing. In fact,
Ref. [18] shows that the number of peaks in PJðqÞ should
scale as N1=6 for the SK model. On the other hand, for a
large N and large �, the EA contours for q0 ¼ 0:2 are
nearly flat, rising less steeply than for q0 ¼ 1, suggesting

that the number of peaks is either decreasing or staying
constant.
Conclusions.—We introduce a statistic� that detects the

fraction of samples with a � function behavior in PJ ðqÞ
near the origin and sharply distinguishing the RSB picture
from scenarios with only a single pair of states such as the
droplet picture. While our results for the SK model are
consistent with RSB, as expected, the EA model does not
display a trend towards many pairs of pure states. These
results lend support to the droplet and chaotic pairs pic-
tures. It is also possible that for the EA model, � increases
very slowly in N and ultimately converges to unity, in
agreement with the RSB picture. However, our data show
no indication of such a trend. It would be interesting to
perform a similar analysis with extremely large data sets
computed with special-purpose computers, such as the
Janus machine [30].
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