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For isolated vacancies in ordered local-moment antiferromagnets we show that the magnetic-field

linear-response limit is generically singular: The magnetic moment associated with a vacancy in zero field

is different from that in a finite field h in the limit h ! 0þ. The origin is a universal and singular screening
cloud, which moreover leads to perfect screening as h ! 0þ for magnets which display spin-flop bulk

states in the weak-field limit.
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Defects are ubiquitous in solids. In magnets with local-
ized spin moments, typical classes of defects are missing or
extra spins, arising, e.g., from substitutional disorder. Very
often, even small concentrations of such defects produce
a large magnetic response at low temperatures: Quasifree
spins cause a Curie tail in the magnetic susceptibility,
which then is routinely subtracted from raw experimental
data. Assuming independent defects, the amplitude of the
Curie tail can be utilized to estimate the defect concentra-
tion, provided that the behavior of a single defect is known.

Here we discuss the physics of isolated vacancies in
antiferromagnets (AFs) which display semiclassical long-
range order (LRO) in the ground state [1]. In zero magnetic
field, the state with a single vacancy has a finite uniform
magnetic moment, m0, because the vacancy breaks the
balance between the sublattices. For collinear magnets,
m0 is quantized to the bulk spin value, m0 ¼ S [2,3], while
in the noncollinear case fractional values of m0 occur
due to the local relief of frustration [4]. These vacancy
moments are expected to show up in magnetization mea-
surements, and they produce a low-temperature Curie
contribution to the uniform susceptibility in the two-
dimensional (2D) case where bulk order is prohibited by
the Mermin-Wagner theorem [3–7].

In this Letter we show that, in an applied field h, non-
trivial screening of the vacancy moment occurs, such that
the linear-response limit h ! 0þ is singular for a magnet
with a single vacancy, Fig. 1: The vacancy-induced mag-
netization jumps discontinuously from its zero-field value
m0 to a different value mðh ! 0þÞ upon applying an
infinitesimal field h. Thus, measurements of the vacancy-
induced moment mðhÞ in a finite field h cannot detect the
zero-field value m0 even for small h [8], which is of
obvious relevance for any experiment trying to quantify
the defect contribution to a sample’s magnetization or
susceptibility. Furthermore, the spin texture around the
vacancy at finite h has a piece [9] which is singular as
h ! 0þ—in a sense made precise below—which screens

the vacancy-induced moment perpendicular to ~h. For mag-
nets which feature spin-flop states (with all spins perpen-

dicular to ~h as h ! 0þ) in the absence of the vacancy, this

leads to a semiclassical version of perfect screening of
the vacancy moment, mðh ! 0þÞ ¼ 0.
In the body of this Letter, we present general arguments

and microscopic calculations supporting these claims.
Explicit results will be given in a 1=S expansion for
spin-S AFs on 2D lattices, with

H ¼ J
X

hiji
~Si � ~Sj � h

X

i

Szi ; (1)

but our results are valid for AFs with LRO in any dimen-
sion d. In particular, the singular response occurs for
vacancies in the square-lattice AF, where—despite numer-
ous studies [6,7,9–13]— it has been overlooked to date
[14]. The singular behavior will be cut off for a finite
vacancy density, and we shall discuss the resulting cross-
over scales [8].
Bulk behavior in a field.—To set the stage, we recapitu-

late the evolution of a bulk AF state, which spontaneously
breaks the underlying SU(2) symmetry, upon application
of a uniform field. As h � 0 breaks the symmetry down
to U(1), an infinitesimal field typically selects a subset of
states, which we refer to as h ! 0þ bulk states: For the

FIG. 1 (color online). Illustration of singular screening for the
square-lattice AF: At zero field, the vacancy induces a moment
~m0 with m0 ¼ S, which is modified into ~mðhÞ in the presence of

a uniform field ~h. The size of the screening cloud, lh, diverges as
h ! 0þ, and m ! 0 in this limit. For details see text.
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square lattice, these are spin-flop states with staggered spin

directions perpendicular to ~h. With increasing field the
spins rotate toward the field direction, until a fully polar-
ized state is reached, see the illustration in Fig. 2(a).

For the triangular-lattice AF, an anomalously large
ground-state degeneracy exists at the classical level for
h � 0, which is lifted both by fluctuations and by addi-
tional interactions [15–18]. Two cases are important:
(a) coplanar and (b) umbrella states, see Fig. 3. In (a) the
spins are oriented in a plane in the field direction, and the
evolution is via an intermediate up-up-down magnetization
plateau (with a bulk magnetization of 1=3 of the saturation
value). In contrast, in (b) the spins are arranged in planar
spin-flop states perpendicular to the field for h ! 0þ, and
evolve in a noncoplanar fashion continuously towards
full polarization. Below, we shall employ an additional

biquadratic exchangeK
P

hijið ~Si � ~SjÞ2 with relative strength
k ¼ KS2=J to select between the two cases in a classical
calculation: k > 0 (k < 0) favors umbrella (coplanar)
states, with jkj< 2=9 required to preserve the familiar
120� order at zero field [18].

Numerical results.—We now present numerical results
for the single-vacancy finite-field ground state of square
and triangular AFs. We consider the vacancy contribution
to the magnetization, mðhÞ, defined as the difference be-
tween the total magnetizations of the system with and
without vacancy. Figures 2 and 3 display mðhÞ for the
classical AF on the square and triangular lattices and
demonstrate our main results: (i) mðh ! 0þÞ does not
reach the zero-field moment jm0j in any of the cases, i.e.,
the impurity magnetization jumps upon application of
an infinitesimal field; (ii) for the square lattice we find
mðh ! 0þÞ ! 0; the same happens for umbrella states in
the triangular lattice. In contrast, mðh ! 0þÞ tends to a

finite value in the coplanar triangular-AF case. Figure 2(a)
also shows the next-to-leading term in a 1=S expansion for
mðhÞ, indicating that quantum corrections do not qualita-
tively change these results.
In the remainder of the Letter we explain the physics

behind these striking observations. As a first step, we show
that the spin configurations are necessarily different for
h ¼ 0 and h ! 0þ in the presence of a vacancy.
Vacancy: Zero-field state.—The vacancy breaks the bal-

ance between the sublattices of the host AF and locally
distorts the bulk state. If the AF is collinear (and remains
collinear upon introducing the vacancy) there is no distor-
tion in the classical limit, and the vacancy-induced mag-
netization is m0 ¼ S. Quantum fluctuations arise from the
action of Sþi S�j terms in the Hamiltonian and hence con-

serve total spin, such thatm0 remains locked to S; however,

the amplitudes of the h ~Sii are modified near the vacancy.

In noncollinear AFs, the directions of the h ~Sii readjust
in response to the vacancy because frustration is locally
relieved. Then, m0 takes a fractional value which depends
on S and microscopic details [4]; i.e., the vacancy spin gets
partially screened, and both undercompensation and over-
compensation are possible.
In all cases, the local distortions decay algebraically

with the distance r to the vacancy due to the presence of
Goldstone modes. Typically this decay follows 1=rdþ1

[4,11], such that the total (i.e., integrated) vacancy contri-
bution to any observable is bounded, i.e., of order unity—
this we refer to as a regular screening cloud.
Singular h ! 0þ limit.—Now consider applying an in-

finitesimal field ~h. To this end, rotate the h ¼ 0 state in spin
space such that the spins far away from the vacancy match
a h ! 0þ bulk configuration. This generates a state with
finite magnetization ~m0 which, however, is in general not
oriented in the field direction. This is illustrated in Fig. 1
for the square lattice, where the spins are oriented
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FIG. 2 (color online). Vacancy contribution to the uniform
magnetization, mðhÞ, for the square-lattice AF. (a) Crosses:
classical result mðhÞ=S, obtained on lattices with L � 768 and
extrapolated to L ! 1; the circle shows the linear-response
value jm0=Sj ¼ 1. Open dots: 1=S correction mð0ÞðhÞ, here
L � 50. Vertical dashed line: saturation field hsat ¼ 8SJ [23].
Top arrows: evolution of the bulk spin state with increasing h.
Inset: small-h behavior of mðhÞ=S, together with a fit m / h lnh
(see text). (b) Finite-size data mðhÞ=S as function of 1=L. m
saturates for L > lh with lh / SJ=h.
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FIG. 3 (color online). Vacancy-induced magnetization as in
Fig. 2, but for the classical triangular-lattice AF with biquadratic
exchange of strength (a) k ¼ �0:07, leading to coplanar states
in a field, and (b) k ¼ 0:1, leading to umbrella states. Here
hsat ¼ 9SJð1þ 2kÞ, the shaded area in (a) indicates the magne-
tization plateau. Insets: small-h behavior. Note that m0 takes a
k-dependent fractional value [4].
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perpendicular to the infinitesimal field—the same applies
to ~m0. Clearly, such a state cannot be the ground state for

h � 0, as stability demands ~m k ~h in the presence of SU(2)
symmetry. In other words, the states at h ¼ 0 and h ! 0þ
are required to differ because the latter is subject to the
additional constraint that the uniform moment has to point
in field direction (while both states have matching spin
directions far away from the vacancy). Fulfilling this
constraint requires an additional distortion to screen the

moment perpendicular to ~h.
This analysis also reveals exceptions without zero-field

singularity in the presence of a vacancy: This happens
when the properly rotated zero-field state has a moment

~m0 which points along the direction of the infinitesimal ~h.
A concrete example is the triangular lattice with coplanar
states and undercompensated impurity moments [4]. (In
the classical limit, there is overcompensation for all k < 0
[4] which leads to results as in Fig. 3(a), but undercom-
pensation can be expected for S <1.)

We note that mean-field theory, neglecting spatial var-
iations and thus distributing the screening process over the
entire system, qualitatively reproduces the zero-field sin-
gularity in mðhÞ, but fails in other respects [19].

Finite-field screening cloud.—We turn to the finite-field
screening, in order to understand the difference between
the cases in Figs. 2(a) and 3(a), where mðh ! 0þÞ reaches
zero or a finite value, respectively. The vacancy-induced

modification of the directions of h ~Sii can be parameterized
by the spherical angles ��i, ��i [one angle is sufficient
for the coplanar cases in Figs. 2(a) and 3(a)]. Considering
that the distortion serves to screen the vacancy moment’s

component perpendicular to ~h, the screening can be quan-
tified using

~m?ðrÞ ¼
X

j ~rij�r

h ~Sii?; (2)

where h ~Sii? is the moment perpendicular to ~h, and the sum
runs over all sites with a distance to the vacancy closer
or equal r. Clearly, ~m?ðr ! 1Þ is the total magnetization

perpendicular to ~h and has to vanish.
We start with the square lattice: The angles ��,

Fig. 4(a), decay exponentially on a length scale lh /
SJ=h. This is expected: The distortion is mediated by a
bulk mode which is a gapless Goldstone mode in zero field,
but acquires a gap / h for h > 0. A remarkable feature is
that ��i at fixed ~ri has a nonmonotonic field dependence
and appears to reach zero as h ! 0 (visible at small r).
This implies that the distortion, and with it the screening,
happens at progressively larger r with decreasing h. This is
confirmed by the plot of ~m?ðrÞ, Fig. 4(c), showing that the
cloud size increases as h ! 0þ.

To understand these results analytically, we resort to a
continuum description: The small-field distortions consist
of smooth variations of the order-parameter field ~’ð~rÞ

(or, equivalently, of the angles � on all sublattices). For
a single vacancy, those distortions have been analyzed in
Ref. [9], and found to decay as hd�1=ð�sc

d�2Þfdðhr=cÞ
where �s and c / SJ are the spin stiffness and spin-wave
velocity, respectively, and fd is a universal function
which depends on the dimension d only. Specifically,
f2ðxÞ ¼ K0ðxÞ (the modified Bessel function), and
f3ðxÞ ¼ expð�xÞ=x.
To analyze the screening of m?, we first note that

distortion-induced (local) contributions to m? arise—in the

presence of a finite bulk magnetization density ~l / ~h – to

linear order in ��, �m? / R
ddrj~lj��, which have to

compensate the bare vacancy-induced transverse moment
(which itself equals S in the square-lattice case). Using the
above long-distance form of the distortion, we have �m? /
ðc2=�sÞðh=cÞd

R
ddrfdðhr=cÞ / ðc2=�sÞ

R
ddxfdðxÞ. As

the last integral is finite, we see that all h dependence
has dropped out, indicating stable screening of m? for
any h.
The insets in Figs. 4(a) and 4(c) confirm the anticipated

scaling of our data with lh: Plotting ��=h and ~m? each as
a function of rescaled distance rh=ðSJÞ reveals data col-
lapse; i.e., the screening cloud is universal for small fields.
The scaling of ��=h also implies that the texture does not
approach a well-defined limiting form as h ! 0þ, but
instead has a diverging size combined with a vanishing
amplitude—this we refer to as a singular screening cloud.
A similar calculation can be employed to obtain the

cloud’s contribution to the field-parallel magnetization
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FIG. 4 (color online). Field-induced screening cloud for
[(a), (c)] the square lattice and [(b), (d)] the triangular lattice with
k ¼ �0:07, for different values of h. (a), (b) Vacancy-induced
rotation angles ��ð~rÞ as a function of the distance r to the
vacancy. In (b) the zero-field angles are shown as well. Insets:
scaling of ��=h vs rh=ðSJÞ / r=lh, with the short-range piece
projected out in (b). (c), (d) Transverse magnetization ~m?ðrÞ as a
function of the integration radius r in Eq. (2). Insets: ~m? vs
rescaled distance rh=ðSJÞ.
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mk � mðhÞ. This arises from two higher-order terms,R
ddrj~lj��2 and

R
ddrj ~’j ~r2

�, while lower orders vanish

because the transverse magnetization density is zero
in the bulk reference state. The first term scales as
hd�1

R
ddxf2dðxÞ while the second one scales as

h
R
ddxf00dðxÞ. Importantly, the first integral is regular

whereas the second one has a short-distance logarithmic
divergence in any d—this is cut off by noting that the lower
limit of the x integral is not zero, but / h. As a result, the
cloud’s contribution to mðhÞ follows ðh lnhÞ for small h.
Indeed, our numerical results in Fig. 2(a) are perfectly fit
by this form—note that the bare vacancy-induced moment

along ~h vanishes / h and is subleading.
Now we turn to the triangular lattice. An analysis of the

angles ��ðrÞ, Fig. 4(b), shows that they arise from a
superposition of two textures, with spatial s-wave and
f-wave symmetries, respectively. The latter is well local-
ized near the vacancy and evolves smoothly into the
zero-field texture [4], while the former is a field-induced
distortion very similar to that in the square lattice. As a
result, we find two-stage screening at small h: At short
distances, the moment of the missing spin is screened to ~m0

in a regular and weakly field-dependent fashion, while the
field-perpendicular component of this ~m0 is then compen-
sated at larger distances via a singular cloud of size lh. This
singular piece can be isolated by projecting ��ðrÞ onto its
s-wave component, Fig. 4(b), and it admits the same con-
tinuum description as above. Because of the nearby mag-
netization plateau, universal scaling is reached at much
smaller h as compared to the square lattice.

Finally, this insight allows us to deduce the value
mðh ! 0þÞ: This is simply the field-parallel part of ~m0

in the (properly rotated) zero-field state, because the con-
tribution of the singular screening cloud vanishes as
ðh lnhÞ. For the triangular lattice with overcompensated

impurity, this ~m0 forms a 60� angle with ~h [4] such that
mðh ! 0þÞ ¼ j ~m0j=2, matching our numerical result in
Fig. 3(a), while for all systems with spin-flop states
mðh ! 0þÞ ¼ 0; i.e., the vacancy moment is perfectly
screened.

Quantum effects.—Although the concrete calculations
so far were for classical spins, the results qualitatively
apply to any system with semiclassical LRO: As happens
in general for noncollinear magnets, quantum effects will

modify directions and amplitudes of h ~Sii. However, the
existence of both the zero-field singularity and the perfect
screening are unaffected, as they derive from symmetry
and stability arguments.

To illustrate this, we have calculated quantumcorrections
tomðhÞ in a 1=S expansion using spin-wave theory on finite
lattices [20–22]. A sample result for the next-to-leading
term ( / S0) of mðhÞ for the square lattice is shown in
Fig. 2 [23]—its h ! 0 behavior is consistent with ðh lnhÞ.

Limits and crossover scales.—The zero-field singularity
only occurs in the thermodynamic limit [8]: m evolves

smoothly for a single vacancy in a finite-size system with
N ¼ Ld sites, and the limits N ! 1 and h ! 0 do not
commute [19].
Assuming now a finite vacancy concentration nimp, the

singularity is replaced by a crossover governed by the two

length scales lh and limp ¼ n�1=d
imp , the mean vacancy dis-

tance. For lh � limp, the vacancy moments respond inde-

pendently to the field, whereas for lh � limp the screening

clouds overlap and hence their moments tend to average
out (for an equal distribution over all sublattices). Thus, the
magnetization per vacancy will follow mðhÞ as calculated
here for elevated fields, but will (smoothly) vanish below a

crossover field given by h=J� n1=dimp.

These considerations also apply at finite temperatures
inside the ordered phase of 3D Heisenberg magnets. In 2D,
order occurs only at T ¼ 0, but the bulk correlation length
� becomes exponentially large as T ! 0. Then, the physics
is governed by the interplay of the three length scales lh,
limp, and �, and we quickly discuss some interesting limits.

For � � lh, limp one recovers the T ¼ 0 physics discussed

above. Single-impurity physics obtains in the dilute limit,
limp � �, lh, where at elevated fields, � � lh, the magne-

tization per vacancy again follows our mðhÞ. In contrast,
in the low-field limit, � � lh, linear response is restored
such that the vacancy susceptibility takes the Curie form
� ¼ m2

0=ð3kTÞ [3–7]; i.e., the singularity is replaced by a

crossover on the scale h=J � expð�T=JÞ. Finally, the limit
lh � �, limp is governed by zero-field physics.

Conclusions.—For a single vacancy in an ordered AF we
have found that the magnetic behavior is generically sin-
gular in the weak-field limit: The vacancy contribution to
the magnetization jumps discontinuously upon applying an
infinitesimal field. The singularity can be traced back to
nontrivial field-induced screening due to a universal and
singular screening cloud in the h ! 0þ limit.
Our predictions can be experimentally verified in any

AF doped with a small, controlled amount of vacancies,
provided that magnetic anisotropies are small [8]. In addi-
tion, numerical studies beyond the 1=S expansion (e.g.,
quantum Monte Carlo calculations) are called for.
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