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As-grown topological insulators (TIs) are typically heavily doped n-type crystals. Compensation by

acceptors is used to move the Fermi level to the middle of the band gap, but even then TIs have a

frustratingly small bulk resistivity. We show that this small resistivity is the result of band bending by

poorly screened fluctuations in the random Coulomb potential. Using numerical simulations of a

completely compensated TI, we find that the bulk resistivity has an activation energy of just 0.15 times

the band gap, in good agreement with experimental data. At lower temperatures activated transport crosses

over to variable range hopping with a relatively large localization length.

DOI: 10.1103/PhysRevLett.109.176801 PACS numbers: 73.63.�b, 61.72.uf, 72.20.�i

The three-dimensional (3D) topological insulator (TI)
[1–5] has gapless surface states that are expected to exhibit
a range of interesting quantum phenomena [6,7]. While a
number of 3D TIs have been identified, most of these are
poor insulators in the bulk, so that the properties of the
surface are obscured in transport measurements. For this
reason achieving a bulk-insulating state remains an active
topic of research [8–17].

Typically, as-grown TI crystals are heavily doped n-type
semiconductors, and, correspondingly, they exhibit metal-
lic conduction. In order to make them insulating these TIs
are compensated by acceptors. With increasing compensa-
tion K ¼ NA=ND, where ND and NA are the concentrations
of monovalent donors and acceptors, respectively, the
Fermi level shifts from the conduction band to inside the
band gap and then at K > 1 into the valence band. When
compensation of donors is complete, K ¼ 1, the Fermi
level is in the middle of the gap and the most insulating
state of the TI is reached. The hope is that at K ¼ 1 the
bulk resistivity � should obey the activation law,

� ¼ �0 expð�=kBTÞ; (1)

with an activation energy � that is equal to half the band
gap Eg. Here, �0 is a constant and kBT is the thermal

energy. Since typically Eg � 0:3 eV, this expectation

would imply a well-insulating bulk at room temperatures
and below.

The typical experimental situation at K ¼ 1, however,
is frustrating [16]. In the range of temperatures between
100 and 300 K the resistivity is activated, but with an
activation energy that is three times smaller than expected,
�� 50 meV. At T & 100 K the activated transport is
replaced by variable range hopping (VRH), characterized
by � / exp½ðT0=TÞx� with x < 1, and the resistivity grows
even more slowly with decreasing T. In Ref. [16] the authors
show that Mott VRH (x ¼ 1=4) provides a reasonable fit to
their data at 50 K & T & 100 K. Definite characterization
of the temperature exponent x is difficult, however, due
to the relatively narrow window of temperature and to

variations between samples. At T & 50 K the resistivity
saturates due to the contribution of the surface states.
In this Letter we suggest an explanation for the unex-

pectedly small bulk resistivity of TIs. We assume that both
donors and acceptors are shallow and we use the theory of
completely compensated semiconductors (CCS) [18,19].
This theory is based on the idea that near K ¼ 1, when
almost all donors and acceptors are charged, random fluc-
tuations in the local concentration of impurities result in
large fluctuations of charge. The resulting Coulomb poten-
tial is poorly screened because of the vanishing average
concentration n ¼ ND � NA of screening electrons. Huge
fluctuations in the random potential bend the conduction
and valence bands edges and in some places bring them to
the Fermi level, thereby creating electron and hole puddles
that nonlinearly screen the random potential. Thus, the
amplitude of fluctuations is limited only by the semicon-
ductor gap Eg. As a result the ground state of a CCS, shown

in Fig. 1, is similar to a network of p-n junctions [18,19].
The characteristic size of these p-n junctions, also called
the nonlinear screening radius, is given by

Rg ¼ E2
g�

2

8�Ne4
; (2)

where � is the dielectric constant, e is the electron charge,
and N ¼ ND ¼ NA. For N ¼ 1019 cm�3 and � ¼ 20,

Rg � 70 nm � N�1=3 � 4:6 nm, so that we deal with a

very long range potential. As a result, the resistivity can be
dramatically different from the expectation outlined above,
which assumed flat bands. First, at relatively high tempera-
tures conduction is due to electrons and holes being acti-
vated from the Fermi level to their corresponding classical
percolation levels (classical mobility edges), Ee and Eh, in
the conduction and the valence bands. These may be
substantially closer to the Fermi level � than Eg=2, but

so far the resulting value of � has not been studied
theoretically. Second, at sufficiently low temperatures
electrons and holes can hop (tunnel) between distant pud-
dles, so that variable range hopping replaces activated

PRL 109, 176801 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

26 OCTOBER 2012

0031-9007=12=109(17)=176801(5) 176801-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.109.176801


transport. In the low temperature limit �ðTÞ should obey
the Efros-Shklovskii (ES) law of VRH [20],

� ¼ �0 exp½ðTES=TÞ1=2�; (3)

where TES ¼ Ce2=��, � is the localization length of states
with energy close to the Fermi level, and C is a numerical
coefficient. So far the magnitude of TES and the nature of
the crossover between activated and VRH conduction have
not been studied.

In this Letter, motivated by the TI resistivity puzzle, we
return to CCS and model numerically the K ¼ 1 case. For
moderately large T we find that � ¼ 0:15Eg. For a TI with

Eg ¼ 0:3 eV this implies � ¼ 45 meV, in agreement with

observed values [16]. We also calculate the single-particle
density of states (DOS) of impurity states, and we find that
the DOS has a Coulomb gap at the Fermi level [20].
We show from our simulation that the resistivity is de-
scribed by Eq. (3) at low temperatures and crosses over to
Eq. (1) at higher T. We present a crude estimate of the
localization length � which suggests that TES � 900 K and
that the crossover between activation and ES VRH occurs
at T � 40 K. Together our results for the activated and
VRH resistivity establish a universal upper limit for the
resistivity �ðTÞ that one can achieve for a 3D TI compen-
sated by shallow inpurities.

In order to model the CCS numerically, we simulate a
cube filled by an equal number of randomly positioned
donors and acceptors (20 000 of each). We numerate all
donors and acceptors by the index i and we define ni ¼ 0, 1
as the number of electrons residing at impurity i and the
variable fi to discriminate between donors (fi ¼ 1) and
acceptors (fi ¼ �1). The resulting Hamiltonian is

H ¼ Eg

2

X
i

fini þ
X
hiji

VðrijÞqiqj; (4)

where qi ¼ ðfi þ 1Þ=2� ni is the net charge of site i and
all energies are defined relative to the middle of the band
gap. The first term of Eq. (4) contains the energies of donor
and acceptor sites, which for the case of shallow impurities
is very close to �Eg=2. The second term is the total

interaction energy of charged impurities. For two impuri-
ties at a distance r � aB, where aB is the Bohr radius of
impurity states, one can describe their interaction using the
normal Coulomb law VðrÞ ¼ e2=�r. For example, an
empty donor shifts the energy of an electron at a distant
filled donor by an amount�e2=�r. On the other hand, for a
pair of impurities with separation r < aB, quantum me-
chanical averaging over the electron wave function be-
comes important (such close impurity pairs are common

in heavily doped semiconductors, where aB > N�1=3). A
pair of very close donors, for example, cannot create an
electron state deeper than that of the heliumlike ion with
binding energy 2e2=�aB. In order to capture this quantum
phenomenon in an approximate way, we use the classical
Hamiltonian of Eq. (4) with a truncated Coulomb potential

VðrÞ ¼ e2=�ðr2 þ a2BÞ1=2. The result of this truncation is to
eliminate the unphysically deep electron states that would
result from very compact impurity pairs with an unmodi-
fied 1=r interaction. We will show below that our results
are mostly insensitive to the details of this truncation.
Note that Eq. (4) does not include the kinetic energy of
electrons and holes in the conduction and valence bands
and, therefore, aims only at describing the low temperature
(kBT � Eg) physics of CCS.

In all results below we use dimensionless units for r, aB,
�, H, Eg, and kBT, measuring all distances in units of

N�1=3 and all energies in units of e2N1=3=�. Thus,
Eq. (4) can be understood as dimensionless, with Eg � 1

and VðrÞ ¼ ðr2 þ a2BÞ�1=2. For a TI with Eg ¼ 0:3 eV,

� ¼ 20 and N ¼ 1019 cm�3, the unit of energy

e2N1=3=� � 15 meV, so that the dimensionless gap Eg �
20. We were unable to directly model Eg ¼ 20, since in

this case the very large Rg � 16 leads to large size effects.

Instead, we present results for the more modest Eg ¼ 10,

where Rg � 4 and size effects are negligible, and for Eg ¼
15, where Rg � 9 and size effects can be treated using

extrapolation. Unless otherwise stated, results below use
aB ¼ 2 and are averaged over 100 random initializations of
the donor and acceptor positions.
In our simulation, we first search for the set of electron

occupation numbers fnig that minimizes H. We start by
assuming that all donors are empty (ni ¼ 0, qi ¼ 1) and
that all acceptors are filled (ni ¼ 1, qi ¼ �1). These
charged donors and acceptors create a random Coulomb
potential whose magnitude exceeds Eg. We then sequen-

tially choose pairs consisting of one filled site and one

Ee 

Eh 

Ec 

Ev 

Rg 

Eg  

 

FIG. 1. Energy diagram of a completely compensated TI with
band gap Eg. The upper and the lower straight lines (Ec and Ev)

indicate the unperturbed positions of the bottom of the conduc-
tion band and the ceiling of the valence band; the middle line (�)
corresponds to the Fermi level. Meandering lines represent the
band edges, which are modulated by the fluctuating potential of
charged impurities; Rg is the characteristic size of these potential

fluctuations. The percolation levels for electrons, Ee, and holes,
Eh, are shown by dashed lines; the activation energy � corre-
sponds to the difference Ee �� (or �� Eh). Puddles occupied
by carriers are shaded. Shallow impurity levels are not shown
because they merge with the band edges.
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empty site and attempt to transfer an electron from the
filled site to the empty site. If the proposed move lowers the
total system energy H, it is accepted, otherwise it is re-
jected. To describe the change in H resulting from such a
transfer it is convenient to introduce the single-electron
energy state, "i, at a given impurity i:

"i ¼
Eg

2
fi �

X
j�i

VðrijÞqj: (5)

The process of transferring electrons concludes when all
pairs i, j with ni ¼ 1 and nj ¼ 0 satisfy the ES stability

criterion:

"j � "i � VðrijÞ> 0: (6)

This final arrangement of electrons can be called a pseudo-
ground state, since higher stability criteria of the ground
state (involving multiple simultaneous electron transfers)
are not checked. Such pseudo-ground states are known to
accurately describe the properties of the real ground state
at all but extremely small energies [19,21,22].

Once the pseudo-ground state fnig is known, the DOS
gð"Þ is calculated by making a histogram of the single-
electron energies f"ig. The result is shown in Fig. 2, with

the DOS in units of 2N=ðe2N1=3=�Þ, so that the total area is
equal to unity. Occupied and empty states are separated by
the Fermi level at " ¼ 0. The nearly constant DOS be-
tween�Eg to Eg reflects a practically uniform distribution

of the random potential from �Eg=2 to þEg=2. Near the

Fermi level one sees the Coulomb gap that is a universal
result of the ES stability criterion [20].

Once the energies f"ig are calculated, we evaluate the
resistivity using the approach of the Miller-Abrahams

resistor network [19]. Namely, each pair of impurities
i, j is said to be connected by the resistance Rij ¼
R0 exp½2rij=�þ "ij=kBT�, where the activation energy

"ij is defined [19] as follows:

"ij ¼
( j"j � "ij � VðrijÞ; "j"i < 0

max½j"ij; j"jj�; "j"i > 0:
(7)

The resistivity of the system as a whole is found using a
percolation approach. Specifically, we find the minimum
value Rc such that if all resistances Rij with Rij < Rc

are left intact, while others are eliminated (replaced with
R ¼ 1), then there exists a percolation pathway connect-
ing opposite faces of the simulation volume. The system
resistivity �ðTÞ is taken to be proportional to Rc, which
captures the exponential term while details of the prefactor
are ignored [19].
In Fig. 3 we plot the computed resistivity as a function of

temperature, using the dimensionless logarithm of the
resistance ðln�Þ� ¼ ð�=2Þ lnðRc=R0Þ and the dimensionless
temperature T� ¼ 2kBT=�. These notations are introduced
to exclude any explicit dependence on �. Figure 3(a) shows

ðln�Þ� versus ðT�Þ�1=2 over the huge range of temperatures
0:03< T� < 200. One can see that at low temperatures
T� < 0:3 the resistivity is well described by the ES
law, Eq. (3), with C � 4:4. The higher temperature range
1< T� < 200 is plotted separately as a function of 1=T� in
Fig. 3(b). Here we find two activated regimes of hopping

FIG. 2 (color online). Dimensionless single-electron DOS
g�ð"Þ ¼ gð"Þ=½2N=ðe2N1=3=�Þ� for a completely-compensated
semiconductor with aB ¼ 2 and Eg ¼ 10. The inset shows the

DOS near the Fermi level " ¼ 0 (upper curve, blue). For
comparison, the quadratic Coulomb gap gð"Þ ¼ ð3=�Þ"2 is
shown by the dashed line [20,23]. The lower (magenta) line
shows separately the DOS of rare filled donors and empty
acceptors.

FIG. 3 (color online). The temperature dependence of the
resistivity for Eg ¼ 10 (blue dots). The dimensionless resistivity

ðln�Þ� is plotted in (a) against ðT�Þ�1=2 to illustrate that the
resistivity follows the ES law at low temperatures, and in
(b) against ðT�Þ�1 to show that the resistivity is activated at
larger T�, with two distinct activation energies. The dashed lines
(black) are linear best fits.
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conductivity. At extremely high temperatures T� > 50 we
see the large activation energy Ea � 0:75Eg while in the

intermediate range 1< T� < 10 we see an activation
energy � ¼ ð0:15� 0:01ÞEg. We repeated this analysis

for the larger band gap Eg ¼ 15 using systems of 10 000,

20 000, and 30 000 donors and by extrapolating to infinite
size we find � ¼ ð0:15� 0:02ÞEg. These results for �

remain unchanged, within our statistical uncertainty, if
we use aB ¼ 1 instead of aB ¼ 2.

It should be noted that the large activation energy
Ea � 0:75Eg observed at T� > 50 does not have any

physical meaning for a real CCS, since at such large
temperatures the conduction is not due to hopping but
rather to free, hot carriers far from the conduction and
valence band edges. Nonetheless, for our model
Hamiltonian this result is consistent with established theo-
ries which say that at such large temperatures Ea ¼ h"iji,
where h. . .i denotes averaging over all pairs i, j (see
Chap. 8 of Ref. [19]).

On the other hand, the second activation energy
� ¼ 0:15Eg makes full physics sense and should be seen

in experiment. At T � Eg electrons optimize their con-

ductivity by hopping among impurities that are energeti-
cally close to the Fermi level. The activation energy � can
be understood as the resulting percolation level for hopping
between nearest-neighboring sites. In other words, if elec-
trons are activated only to those sites with j"j< "p, then

precisely at "p 	 � ¼ 0:15Eg there exists an infinite con-

duction pathway for electrons comprised of hops of length

�N�1=3 or shorter. In a heavily doped semiconductor this
energy is equivalent to the activation energy of electrons
from the Fermi level to the conduction band mobility edge
Ee. (Of course, holes are activated from the Fermi level
to their percolation level Eh as well). For a typical TI
Eg ¼ 0:3 eV, so that we get � ¼ 45 meV, in good agree-

ment with typical experimental data [16]. (We note, how-
ever, that recent experiments on Sn-doped Bi2Te2Se have
achieved �� 125 meV [17]. Such large activation ener-
gies may be associated with deep donor impurity levels,
which go beyond our model).

This activation to the percolation level persists until
much smaller temperatures, where� becomes prohibitively
large compared to the thermal energy. At such small
T� conduction proceeds by VRH among electron or hole
puddles at the Fermi level and the resistivity is given
by Eq. (3).

One can interpret the relatively small numerical factor
0.15 above by recalling that in a typical 3D continuous
random potential, �17% of space has a potential smaller
than the percolation level [19]. As we demonstrated above
the energy of the conduction band bottom is roughly uni-
formly distributed in the interval (0, Eg). This means that

the percolation level Ee should be close to 0:17Eg and

makes our result � ¼ 0:15Eg quite reasonable.

So far we have emphasized results that do not explicitly
depend on the localization length �. In fact, knowledge of
� is necessary to predict TES and the transition temperature
Tt between Eq. (1) and (3) in real temperature units.
[According to Fig. 3(a), the transition happens at
T� � 1=2, or Tt � �=4.] We argue now that in a TI � is
quite large, leading to a prominent role for VRH. To see
this, consider that if an electron with energy close to the
Fermi level is assumed to tunnel from one electron puddle
to another distant puddle along the straight line connecting
them, then the tunneling path passes through regions where
the conduction band bottom is quite high above Fermi
level. This implies a small tunneling amplitude, or � �
aB. In fact, however, a tunneling electron can use the same
geometrical path as a classical percolating electron with
energy � above the Fermi level. In order to roughly esti-
mate �, we assume that along such a classical percolation
path the tunneling barriers V are uniformly distributed in
the range 0 
 V 
 � and we neglect the curvature of this
path. Integrating the action along this path then gives

�� @=ðm�Þ1=2 ¼ aB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2=aB�

p
. For a TI with Eg ¼ 20

and aB ¼ 2 this gives � ’ 0:8. This crude estimate leads to
TES � 900 K and Tt � 40 K, which is similar in magnitude
to the experimentally observed Tt � 100 K where the resis-
tivity crosses over from activated to VRH behavior [16].
We note that if one plots our result for ðln�Þ� against

ðT�Þ�1=4 in the relatively narrow crossover range 50 K<
T < 100 K, one gets a mostly straight line, as seen in
Ref. [16]. However, our results suggest that at low tem-
peratures the bulk resistivity follows the ES law of VRH
with temperature exponent x ¼ 1=2, which should
become apparent if the bulk resistivity can be probed
to very low temperature. Such measurements are presum-
ably possible in samples that are much thicker than
those studied in Ref. [16] (� 100 �m). For such thick
samples conduction through the bulk of the TI crystal
dominates over the surface transport until much smaller
temperatures.
To conclude, we have studied numerically the bulk

resistivity of a TI crystal with band gap Eg as a CCS. We

find that at high temperatures kBT * 0:03Eg the resistivity

is activated with relatively small activation energy 0:15Eg,

in agreement with experimental data [16]. At lower tem-
peratures the resistivity crosses over to ES VRH, with an
estimated characteristic temperature TES � 900 K. Thus,
Eq. (3) with TES � 900 K at T & 40 K and Eq. (1) with
� ¼ 0:15Eg at T * 40 K give the upper limit for resistiv-

ity that one can achieve for a heavily doped and completely
compensated TI with shallow impurities.
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