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The critical properties of the finite temperature Mott end point are drastically altered by a coupling to

crystal elasticity, i.e., whenever it is amenable to pressure tuning. Similar as for critical piezoelectric

ferroelectrics, the Ising criticality of the electronic system is preempted by an isostructural instability, and

long-range shear forces suppress microscopic fluctuations. As a result, the end point is governed by

Landau criticality. Its hallmark is, thus, a breakdown of Hooke’s law of elasticity with a nonlinear strain-

stress relation characterized by a mean-field exponent. Based on a quantitative estimate, we predict critical

elasticity to dominate the temperature range �T�=Tc ’ 8%, close to the Mott end point of

�-ðBEDT-TTFÞ2X.
DOI: 10.1103/PhysRevLett.109.176401 PACS numbers: 71.30.+h, 62.20.de, 64.60.fd

Strong repulsion between electrons in a solid containing
approximately one electron per lattice site promotes insu-
lating behavior as the electrons’ motion is inhibited by the
large energetic cost of having a site doubly occupied. A so-
called Mott insulator is favored if the on site Coulomb
repulsion U exceeds the kinetic energy W while metallic
behavior prevails for U=W � 1, allowing for a first-order
metal-insulator transition at a critical ratio of U=W.
Usually, this critical ratio can be controlled by an external
control parameter like pressure, p, or doping, giving rise to
a line of first-order transitions in the (p, T) phase diagram
plane, where T is temperature. This line of transitions
terminates in a second-order critical end point at a finite
temperature Tc beyond which the system can be smoothly
transformed from the insulating to the metallic regime by
varying p and T, see Fig. 1.

The nature of the finite-T critical end point of the Mott
transition attracted some attention recently. From general
considerations, one expects it to belong to the Ising uni-
versality class [1,2], similarly to the end point of the liquid-
gas transition. The double occupancy of a single site plays
here the role of the local Ising order parameter of the
transition. Measurements of the electrical conductivity on
Cr-doped V2O3 [3] have confirmed this expectation.
However, transport [4] and NMR [5] measurements on
the quasi-two-dimensional organic charge-transfer salt
�-ðBEDT-TTFÞ2X [6–8] questioned this interpretation
and suggested a different universality class. Subse-
quently, various theories were proposed to account for
the unconventional behavior [9–12]. In particular, it was
demonstrated [13] that the analysis of the conductivity is
intricate as its scaling exponents are not necessarily di-
rectly related to the scaling dimension of the Ising order
parameter. Taking this into account, the conductivity ex-
periments could be reconciled with Ising universality.

In contrast to transport quantities, thermodynamics in
principle allows for a straightforward interpretation in

terms of a standard critical scaling analysis. Ultrasound
experiments revealed a pronounced softening close to the
Mott end point [14–16], but an analysis of the critical
behavior has not been performed yet. Thermal expansion
measurements on �-ðBEDT-TTFÞ2X [17,18] are consistent
with two-dimensional critical Ising behavior even though
an experimental verification of scaling exponents was not
possible until now.
While the Mott transition of an idealized correlated

electron system should exhibit Ising criticality, a coupling
of electrons to crystal elasticity drastically changes its
critical properties. The Mott transition is very sensitive to
the presence of elastic strain in the atomic crystal lattice as
it alters the overlap integrals of electron wave functions
between adjacent lattice sites. This in turn changes the
kinetic energy W, allowing for an efficient tuning of the
transition by applying external stress, e.g., a compressive
pressure as in Fig. 1. Conversely, the critical Mott system
exerts an internal pressure on the elastic system to which
the crystal lattice responds. The detection of this response

FIG. 1 (color online). The line of first-order Mott transitions
terminates at a finite temperature critical end point. The
pressure-tuned end point exhibits Landau criticality due to
the nonperturbative Mott-elastic coupling (yellow regime). The
dashed lines bound possible low temperature phases like anti-
ferromagnetism and superconductivity.
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with the help of dilatometric measurements, e.g., thermal
expansion, is a convenient and sensitive probe of Mott
criticality. Sufficiently far away from criticality, this lattice
response is perturbative and the critical behavior itself
remains unaffected.

However, close to the Mott end point, the lattice nec-
essarily reacts in a nonperturbative manner to the internal
stress, leading to a vanishing elastic modulus and thus,
to a breakdown of Hooke’s law of elasticity. This was
noted before by Krishnamurthy and collaborators [19,20]
within the framework of the compressible Hubbard
model. Importantly, we point out here that this breakdown
of Hooke’s law is generically accompanied by a crossover
from Ising criticality to Landau critical behavior with
mean-field exponents. At the origin of this change of
universality class are the long-ranged shear forces of
the atomic crystal lattice. They become instrumental as
an elastic modulus becomes small so that eventually
Landau mean-field behavior prevails close to the Mott
end point.

Within an effective field theoretic description, we con-
sider a coupling of the elastic strain tensor "ij to the Ising

order parameter � of the Mott transition,

Lint ¼ ��1;ij"ij�þ 1

2
�2;ij"ij�

2; (1)

where �1;ij and �2;ij are elastic coupling tensors.

Interestingly, as the Ising symmetry of the Mott end point
is an emergent symmetry, a linear coupling �1;ij of strain to

the order parameter is generally allowed. The quadratic
coupling �2;ij is less important, but for completeness, we

include it in the following discussion. The effect of a linear
coupling of an order parameter to strain was considered by
Levanyuk and Sobyanin [21] and independently, by Villain
[22] in the context of critical ferroelectrics, who showed
that it suppresses critical long-wavelength fluctuations. As
a consequence, for sufficiently large �1;ij, the Ginzburg

criterion is never fulfilled, thus stabilizing Landau mean-
field behavior.

An analysis of the effective elastic Hamiltonian [23,24]
suggests that even if the critical subsystem is controlled by
an interacting renormalization group fixed point, a small
linear elastic coupling �1;ij can recover mean-field behav-

ior sufficiently close to the transition. It turns out that the
singularities associated with the Mott end point induce, via
the coupling �1;ij, a macroscopic instability of the crystal

lattice. At such a lattice instability, an elastic modulus
associated with the macroscopic strain field Eij, i.e., an

eigenvalue of the 6� 6 elastic constant matrix, C�� ffi
Cijkl, vanishes [25]. In addition to Eij, the elastic strain

also contains a part that carries finite momentum and
describes the long-wavelength acoustic modes

"ijðrÞ ¼ Eij þ eijðrÞ; (2)

with
R
d3reijðrÞ ¼ 0. Importantly, at a lattice instability,

the velocities of the acoustic modes soften, but generally
remain finite due to the shear stiffness of the solid. The
phonon velocities are determined by the 3� 3 matrix
MikðqÞ ¼

P
jlCijklqjql depending on momentum q, and

its eigenvalues generally remain positive even if an eigen-
value of Cijkl vanishes. Possible exceptions may be acous-

tic modes with momenta in certain lattice directions. For
general momenta, however, the acoustic modes remain
noncritical and, as a consequence, the structural transition
is described by Landau’s mean-field theory [23,24].
Neglecting these noncritical acoustic modes, the macro-

scopic strain Eij is determined by the effective potential

V ðEijÞ ¼ 1

2
EijC

ð0Þ
ijklEkl þ Eij�ij

þ fsingðt0 þ �2;ijEij; h0 þ �1;ijEijÞ; (3)

where Cð0Þ
ijkl is the elastic constant matrix in the absence of

Mott-elastic couplings �n;ij, with n ¼ 1, 2, and �ij is an

externally applied macroscopic stress. The free energy
density fsing is attributed to the critical electronic subsys-

tem and is governed by the Ising universality class. The
two relevant perturbations, h0 and t0, quantify the distance
to criticality (for �n;ij ¼ 0) and generally depend on tem-

perature T. In order not to distract with cumbersome
notation and to focus on the mechanism at play, let us
assume that the electronic subsystem mainly couples to a
certain singlet, E, of the irreducible representations of the
crystal group. We can then limit ourselves to an effective
potential for E only,

V ðEÞ ¼ K0

2
E2 � Epþ fsingðt0 þ �2E; h0 þ �1EÞ: (4)

Here, K0 is the corresponding modulus for �n ¼ 0.
Furthermore, we considered, for simplicity, the application
of a hydrostatic pressure, �ij ¼ �p�ij, assuming a finite

overlap with the singlet E. The thermodynamic free
energy density obtains after minimizing this potential
with respect to E.
The sensitivity of the Mott end point, with respect to

pressure tuning, becomes manifest if the potential [Eq. (4)]
is minimized perturbatively in �n. In zeroth order, one has
E ¼ p=K0 so that the free energy density becomes

F pert ¼ � p2

2K0

þ fsingðt0 þ �2p=K0; h0 þ �1p=K0Þ: (5)

The elastic coupling induces a pressure dependence of the
arguments of the function fsing which allows us to control

the distance to criticality by varying p, thus enabling
pressure-tuning of the Mott transition.
However, it is important to realize that such a perturba-

tive treatment necessarily breaks down sufficiently close to
the end point. This becomes evident after expanding the
potential in a Taylor series,
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V ðEÞ ¼ fsingð�t; �hÞ � ðp� �pÞ�Eþ K

2
�E2

þ u

4!
�E4 þOð�E5Þ; (6)

where �E ¼ E� �E, �t ¼ t0 þ �2
�E, and �h ¼ h0 þ �1

�E.
The value of �E is conveniently chosen such that the pre-
factor of the cubic term,�E3, in the expansion just vanishes.
The pressure �p reads �p ¼ K0

�Eþ ð�2@�t þ �1@ �hÞfsingð�t; �hÞ,
and the quartic coupling u is given by fourth-order
derivatives of fsing. Importantly, the modulus gets renor-

malized by the susceptibilities �ab ¼ �@a@bfsingð�t; �hÞ
with a, b ¼ �t, �h,

K ¼ K0 � �2
1� �h �h � 2�1�2� �h �t � �2

2��t �t: (7)

The most singular susceptibility is � �h �h which necessarily
diverges, � �h �h ! 1, as the end point ð�t; �hÞ ¼ 0 is ap-
proached. Hence, irrespective of the magnitude of the
linear elastic coupling, �1 � 0, the divergence of � �h �h

will drive the effective modulus to zero at a finite value
of �t, where the Taylor expansion in Eq. (6) is well-defined.
The resulting isostructural instability at K ¼ 0 and p ¼ �p
identifies a mean-field end point in the phase-diagram. This
critical end point at (tc0, pc) preempts the Mott-Ising end
point in Fig. 2(b). The coupled Mott-elastic system, thus,
avoids the Ising singularities by developing a nonperturba-
tive strain response to pressure changes. Minimization of

Eq. (6) for K ¼ 0 yields �E ¼ ð6ðp� �pÞ=uÞ1=� with the
Landau value � ¼ 3, clearly violating Hooke’s law
of elasticity. This violation sets in for jp� �pj & �p� at

K ¼ 0 with �p� ¼ K3=2
0

ffiffiffiffiffiffiffiffi
6=u

p
.

As a concrete example, we assume that the critical
electronic subsystem is effectively two-dimensional, and
the function fsing in Eq. (4) is determined by the 2d Ising

model [26]

fsingðt; hÞ ¼ f0

�
t2

8	
logt2 þ jhj16=15�ðtjhj�8=15Þ

�
; (8)

where f0 has the dimension of a free energy density (and t
and h are assumed to be dimensionless). Using the results
of Ref. [26], the scaling function � can be evaluated
numerically. In order to illustrate the mean-field character
of the shifted Mott end point, we show in Fig. 3 the second
derivative �@2t0F of the free energy density F for �1 � 0

(and �2 ¼ 0). The pressure is fixed to the critical value pc

so that the end point is crossed as a function of t0, i.e.,
along the vertical axis in Fig. 2(b). The solid curve shows
the behavior obtained from minimizing the full potential
[Eq. (4)] while the dashed curve follows from the pertur-
bative expression [Eq. (5)]. The latter exhibits the charac-
teristic logarithmic divergence of the 2d Ising model at
t0 ¼ 0. However, the nonperturbative renormalization of
the elastic constant results in a preemptive mean-field
transition at t0c > 0 so that the logarithmic divergence is
cut off and �@2t0F instead shows a mean-field jump and

remains finite [21].
These considerations are directly relevant for

�-ðBEDT-TTFÞ2X close to its Mott end point. In
Ref. [18], the perturbative free energy density [Eq. (5)]
was used together with Eq. (8) for the interpretation of
thermal expansion measurements. For the so-called d8-Br
crystal no. 1 in Ref. [18], for which p� pc � 50 bar at
ambient pressure and Tc � 30 K, the following fitting
parameters were obtained: f0 � 5:7 bar, h0 þ �1pc=K0 �
�0:004ðT � TcÞ=Tc, and �1=K0 � 0:07=kbar, where the
scaling freedom was exploited to choose t0 þ �2pc=K0 ¼
ðT � TcÞ=Tc. As the exact critical temperature Tc of the
crystal is not known, there is no reliable estimate for �2. In
the following, we neglect the subleading corrections due to
�2 and use �2 ¼ 0. A crucial question concerns the ex-
tension of the nonperturbative regime in order to assess
whether an experimental investigation of the crossover
from Ising to Landau criticality is feasible. With the above

FIG. 2 (color online). Phase diagram close to the finite-T Mott
end point in the (a) absence and (b) presence of a linear elastic
coupling �1 � 0 (and �2 ¼ 0); t0 and h0 are the two relevant
fields and p is the pressure. Whereas for (a), the end point is
Ising critical for (b), a crossover is induced from Ising to Landau
mean-field criticality for jt0 � tc0j & tc0 and jp� pcj & �p�.
In the uncolored and yellow shaded regime in (b), thermody-
namics is governed by Eqs. (5) and (6), respectively, and in the
brown shaded regime, the full potential Eq. (4) must be used.
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FIG. 3 (color online). The second derivative �@2t0F as a
function of t0 exhibits a pure mean-field jump at criticality due
to the linear Mott-elastic coupling (solid curve) that preempts the
Ising singularity (dashed curve), see text.
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fitting parameters and the estimate for the bare modulus
K0 � 122 kbar [20], we can estimate the width of the
Landau critical regime in pressure, �p�, and temperature,
�T� � tc0Tc for this compound, see Fig. 1,

�p� � 45 bar; �T� � 2:5 K: (9)

These values are sufficiently large to allow for an experi-
mental detection of the crossover phenomena. In fact, the
d8-Br crystal seems to be located already within the cross-
over regime as �p� is on the same order as the distance
p� pc [27].

With the above fitting values and the value for K0, we
can predict the thermodynamics with the help of the po-
tential Eqs. (4) and (8). In particular, the crossover at �p�
is illustrated in Fig. 4 which shows the expected lattice
strain as a function of applied pressure. Far away from the
transition, jp� pcj � �p�, the strain is linear in the
applied pressure, thus obeying Hooke’s law. However,
at Tc the pressure-strain relation becomes nonlinear for
p ! pc with mean-field exponent � ¼ 3. This breakdown
of Hooke’s law and the concomitant divergence of the
associated modulus serves as a smoking gun criterion for
the detection of the Landau critical regime where the Mott-
elastic coupling becomes nonperturbative.

In Fig. 5(a), we show the thermal expansion, 
 ¼
@p@TF , as a function of temperature for different pressure

values (solid lines). For comparison, the dashed lines dem-
onstrate the corresponding Ising critical behavior obtained
from the perturbative expression of Eq. (5). The latter is a
good approximation far away from the end point but fails
close to it and, in particular, exhibits a peak at a tempera-
ture 	ðTc � �T�Þ, that is smaller than Tc, see also Fig. 2.
The crossover is identified when the solid and dashed
curves at a given pressure start to deviate substantially.
Finally, Fig. 5(b) displays the thermal expansion as a

function of pressure for different temperatures. Note that
the sign change of the thermal expansion in Fig. 5(b) can be
related to entropy accumulation, similarly as in the case of
quantum criticality [28].
In Ref. [13] the conductivity, �, was interpreted to scale

with the energy-density of the Ising model, �	 @t0fsing. If

this interpretation holds across the crossover discussed
here, i.e., �	 @t0F , one would also expect signatures in

transport at scales �T� and �p� of Eq. (9). Interestingly,
whereas the pressure dependence of�measured in Ref. [4]
does not show such a signature, there are indications of a
crossover in �ðTÞ at around Tc 
 1 K. Clearly, detailed
dilatometric studies are favored to identify unambiguously
the crossover to Mott-Landau criticality. Our estimate for
�-ðBEDT-TTFÞ2X, Eq. (9), indicates that this is experi-
mentally feasible. This identifies this compound as a prom-
ising candidate to investigate the strong coupling between
electronic and elastic degrees of freedom close to the
finite-T Mott end point and the concomitant change in
universality class.
We acknowledge helpful discussions with M. Lang,
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