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In order to elucidate the role of surfaces at nonequilibrium phase transitions, we consider kinetic Ising

models with surfaces subjected to a periodic oscillating magnetic field. Whereas, the corresponding bulk

system undergoes a continuous nonequilibrium phase transition characterized by the exponents of the

equilibrium Ising model, we find that the nonequilibrium surface exponents do not coincide with those of

the equilibrium critical surface. In addition, in three space dimensions, the surface phase diagram of the

nonequilibrium system differs markedly from that of the equilibrium system.
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The ubiquity of nonequilibrium steady states in nature
constitutes a permanent reminder of the challenges en-
countered when trying to understand interacting many-
body systems far from equilibrium. Whereas in some
instances, as for example paradigmatic transport models
[1] or driven diffusive systems [2], notable progress has
been achieved in understanding nonequilibrium steady
states, a common theoretical framework remains elusive.
This is especially true in cases where steady states are
influenced by the presence of surfaces or interfaces, which
can change properties even deep inside the bulk [3–17].

Nonequilibrium phase transitions form an interesting
class of phenomena that share many commonalities with
their equilibrium counterparts. For example, for continu-
ous transitions different universality classes, characterized
by different sets of critical exponents, have been identified.
Well-known examples can be found in driven diffusive
systems [2], at absorbing phase transitions [18,19], or in
magnetic systems subjected to a periodically oscillating
external field [20,21]. For some absorbing phase transi-
tions, as for example, directed percolation, the surface
critical properties have been studied to some extent, see
Ref. [6] and references therein.

Kinetic ferromagnets in a periodically oscillating mag-
netic field display as a function of the field frequency a
nonequilibrium phase transition between a dynamically
disordered phase at low frequencies and a dynamically
ordered phase at high frequencies. Let us assume that the
magnetization is aligned with the direction of the external
field. If the field now reverses direction, the system be-
comes metastable and tries to reverse its magnetization
through the nucleation of droplets that are aligned with
the field. If the period of the field is large compared to the
metastable lifetime, then the metastable state completely
decays before the field reverses direction again; i.e., the
ferromagnet is able to follow the field, yielding a time-
dependent magnetization that oscillates symmetrically
about zero. The dynamically ordered phase is obtained
when the period of the field is small compared to the
metastable lifetime, thus that the system is not able to fully

decay from the metastable state before the field changes
direction again. The magnetization then oscillates about
a nonzero value. This behavior has been studied theoreti-
cally in a large range of systems, as for example, the Ising
[22–24], Heisenberg [25,26], or Blume-Emery-Griffiths
[27] models, to name a few. Possible experimental realiza-
tions have been discussed in Co films on Cu(001) [28] as
well as in ½Co=Pt�3 magnetic multilayers [29]. Of special
interest in the following is the kinetic Ising model in an
oscillating field that is displaying critical exponents at a
dynamic phase transition, which are identical to those
found at the phase transition of the equilibrium Ising
model [24]. This surprising observation is consistent with
a symmetry argument given in Ref. [30] and has been
substantiated through the study of the time-dependent
Ginzburg-Landau model in an oscillating field [31].
In the past, very few studies have looked at the impact

surfaces can have on this dynamic phase transition, thereby
focusing mostly on rather general aspects. For example,
the effects of boundaries on magnetization switching in ki-
netic Ising models were studied in Ref. [32]. In Refs. [25,33],
the dynamic phase transition was investigated in Heisenberg
films with competing surface fields.
In this Letter, we present the first study of the surface

critical properties at a dynamic phase transition. Using
large-scale numerical simulations, we study kinetic Ising
models with free surfaces subjected to a square-wave
oscillating field. Both in two and three space dimensions
we obtain values for the surface critical exponents that
differ markedly from the values of the equilibrium surface
exponents, thus demonstrating that the dynamic surface
universality class differs from that of the equilibrium sys-
tem, even though the same universality class prevails for
the corresponding bulk systems. In addition, we find that
the kinetic surface phase diagram in three dimensions is
remarkably simple and does not exhibit a special transition
point, nor a surface or extraordinary transition, which are
all present in the equilibrium surface phase diagram.
In order to study the surface critical behavior at the

dynamic phase transition, we consider square and cubic
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lattices with open boundary conditions in one direction,
called z direction in the following, whereas in the direc-
tions perpendicular to the z direction we have periodic
boundary conditions [34]. In this way, we have in a system
of linear extend L two surfaces, located at z ¼ 1 and
z ¼ L. Every lattice site x is characterized by an Ising
spin Sx ¼ �1. The Hamiltonian is given by

H ¼ �Jb
X

hx;yi
SxSy � Js

X

fx;yg
SxSy �HðtÞX

x

Sx; (1)

where Jb > 0 and Js > 0 are ferromagnetic bulk and sur-
face coupling constants. The first sum is over nearest
neighbor sites where at most one of the sites is in a surface
layer. The second sum, on the other hand, is over neighbor-
ing sites that are both in a surface layer. We thereby allow
for different values of the coupling constants at the surface
and inside the bulk. Finally, the last term is the magnetic
field term where HðtÞ is a spatially uniform field that
oscillates in time. We follow [24] and use a square-wave
field with amplitude H0. Both temperature and magnetic
field strength are chosen in such a way that the system is in
the multidroplet regime [24]: T ¼ 0:8T2d

c , H0 ¼ 0:3Jb for
d ¼ 2 and T ¼ 0:8T3d

c ,H0 ¼ 0:4Jb for d ¼ 3. Here T2d
c ¼

2:269 � � � Jb=kB and T3d
c ¼ 4:5115Jb=kB are the critical

temperatures of the two- and three-dimensional equilib-
rium systems.

As the surfaces break spatial translation invariance, all
quantities of interest depend on the distance to the surface.
We therefore define local, i.e., layer-dependent quantities.
Thus, we consider the layer magnetization averaged over
one period of the external field (t1=2 is the half-period of the
oscillating field),

QðzÞ ¼ 1

2t1=2

I
mðt; zÞdt; (2)

with the time-dependent magnetization mðt; zÞ ¼
1

Ld�1

P
xSxðtÞ of layer z, the sum being taken over all spins

in that (d� 1)-dimensional layer. The local order parame-
ter is then given by hjQðzÞji, where h� � �i indicates both a
time average (i.e., an average over many periods) and a
thermal average (realized in the numerical simulations
through multiple independent runs with different random
number sequences), yielding typically a total of 500 000
periods over which the average is taken. In a similar way,
we define the layer Binder cumulant

UðzÞ ¼ 1� h½QðzÞ�4i
3h½QðzÞ�2i2 (3)

and the layer susceptibility

�ðzÞ ¼ Ld�1ðhQðzÞ2i � hjQðzÞji2Þ: (4)

In the following, the surface quantities will be character-
ized by an index s, whereas an index b will be given to the
quantities from the middle of the sample.

An important quantity in the study of the dynamic phase
transition is the ratio

� ¼ t1=2
h�ib (5)

that quantifies the competition between the metastable
state, characterized by the metastable lifetime h�ib, and
the oscillating magnetic field. For small values of �, we
are in the dynamically ordered phase, whereas for large
values the system is dynamically disordered. The quantity
� therefore plays the same role as that played by tempera-
ture at an ordinary equilibrium phase transition. The meta-
stable lifetime in our systems is again layer-dependent, the
value of h�ðzÞi being smaller in the surface layer than deep
inside the bulk, as surface spins are coupled to fewer spins.
As we are interested in the surface properties at the bulk
phase transition, we define � with respect to the bulk
quantity h�ib. The dynamic phase transition then takes
place at the critical value �c ¼ 0:918 in d ¼ 2 [24] and
�c ¼ 1:285 in d ¼ 3.
As shown in Fig. 1 for the two-dimensional system with

Js ¼ Jb, both the bulk and the surface order parameters
decrease rapidly when approaching the critical point �c

from below. Concomitantly, the bulk and surface suscep-
tibilities display peaks in the vicinity of �c. Changing
the system size yields system size dependencies (shifts of
the positions of the maxima of the susceptibilities, increas-
ing peak heights, . . .) typical for a continuous phase
transition.
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FIG. 1 (color online). Bulk (a, b) and surface (c, d) quantities
for the two-dimensional model, composed of L� L spins, with
Js ¼ Jb. Close to the bulk critical point �c ¼ 0:918, the local
order parameters decrease rapidly and the local susceptibilities
display pronounced maxima. Here and in the following error
bars are smaller than the sizes of the symbols.
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In the infinite system, the order parameter and the sus-
ceptibility show an algebraic behavior close to the critical
point,

hjQbji � ð�c ��Þ�; �b � j�c ��j��: (6)

Using finite-size scaling [35], the authors of Ref. [24]
found in two dimensions the same values for the exponents
as those obtained for the equilibrium Ising model, namely
�=� ¼ 1=8 and �=� ¼ 7=4, where � is the critical expo-
nent that governs the divergence of the correlation length.

Similarly, surface critical exponents are introduced to
describe the behavior of surface quantities close to the bulk
critical point (we use here the standard nomenclature of
surface critical phenomena, see Refs. [34,36,37]),

hjQsji � ð�c ��Þ�1 ; �s � j�c ��j��11 : (7)

Close to a bulk critical point, finite-size scaling theory
[34,36,37] provides us with scaling relations for our sur-
face quantities,

hjQsji ¼ L��1=�F�ð�L1=�Þ; (8)

�Q
s ¼ L�11=�G�ð�L1=�Þ; (9)

where � ¼ j���cj
�c

, whereas F� and G� are scaling func-

tions, where the þ (�) sign corresponds to �> (<) �c.
Choosing � ¼ �c, we therefore expect that our quantities
depend algebraically on the linear system size. This is
shown in Fig. 2 for various values of the surface coupling
Js. For not too large values of Js corrections to scaling are
negligible, so that we can determine the values of the
critical exponents from the slopes. We find �1=� ¼
0:43ð1Þ and �11=� ¼ 0:18ð1Þ. We immediately remark
that these values rather well fulfill the scaling relation
2�1 þ �11 ¼ d� 1 that is expected to hold for surface
critical exponents. We also note that our values differ
strongly from the values of the surface exponents in
the equilibrium critical Ising model: �e

1=� ¼ 0:5 and

�e
11=� ¼ 0 [34,36,37]. We therefore have the interesting

situation that while the dynamic phase transition in the
bulk belongs to the universality class of the equilibrium
Ising model, this is not true for the corresponding surface
universality class.
For the three-dimensional system, the bulk system

undergoes again a dynamic phase transition characterized
by the critical exponents of the three-dimensional equilib-
rium critical Ising model, as we verified. For the surface,
however, the situation is more complicated. For not too
small values of the surface coupling, the situation is similar
to the two-dimensional case; see the example Js ¼ 2Jb
shown in the first row in Fig. 3. When reducing �, the
surface undergoes at the bulk transition value �c a tran-
sition to a dynamically ordered phase. This transition is
revealed by a characteristic peak in the surface suscepti-
bility as well as by a crossing at �c of the surface Binder
cumulant computed for different system sizes. However,
for values of Js < 1:5Jb, see Fig. 3(c), the surface spins do
not order dynamically at �c, but instead are still able of
following the external field, even though this is no longer
the case for the bulk spins. At lower values of �, the
surface order parameter of our finite systems deviates
from zero, but this partial dynamical ordering is not related
to a phase transition. This is also revealed by the presence
of a noncritical peak (or, for very small values of Js, by the
complete absence of any peak) in the surface susceptibility
[see Fig. 3(d)] as well as by the absence of the crossing of
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FIG. 2 (color online). Log-log plot of (a) the surface order
parameter and (b) the surface susceptibility as a function of the
linear system size for the two-dimensional kinetic Ising model at
� ¼ �c. The different curves correspond to different values of
the surface coupling constant Js (given in units of Jb). The
dashed lines have slopes�0:43 (a) and 0:18 (b). For large values
of Js corrections to scaling become sizeable.

0.6 0.8 1 1.2 1.4
Θ

0

0.2

0.4

0.6

<
|Q

s|>

J
s
=0

J
s
=0.5

J
s
=1.0

J
s
=1.5

J
s
=2.0

1 1.1 1.2 1.3

0

0.2

0.4

0.6

0.6 0.8 1 1.2 1.4
Θ

0

10

20

30

χ s

  L=48
  L=64
  L=96

1 1.1 1.2 1.3
Θ

0

0.2

0.4

0.6

U
s

0.6 0.8 1 1.2 1.4
Θ

0

10

20

30

χ s

J
s
=0

J
s
=0.5

J
s
=1.0

J
s
=1.5

J
s
=2.0

(a)

(b)

(c)

(d)

J
s
=1

FIG. 3 (color online). Surface susceptibility (a) and surface
Binder cumulant (b) for the three-dimensional kinetic Ising
model with Js ¼ 2Jb. For small values of Js, the surface does
not order dynamically at the bulk critical point, as shown by
(c) the surface order parameter and (d) the surface susceptibility.
All surface coupling constants are expressed in units of Jb. The
inset in (b) shows that for Js ¼ Jb the surface Binder cumulants
do not cross at a common value of �. The system size in (c) and
(d) is L ¼ 96.
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the surface Binder cumulants for different system sizes, as
shown in the inset of Fig. 3(b).

Based on our data, where we studied surface couplings
from Js ¼ 0 to Js ¼ 16Jb, the surface phase diagram of the
three-dimensional kinetic Ising model shown in Fig. 4(b)
differs remarkably from the corresponding diagram of the
equilibrium model [34,36,37]; see Fig. 4(a). Not only does
the surface not order dynamically at the bulk critical
point for Js < 1:5Jb, as just discussed, the kinetic Ising
model also does not exhibit a surface transition, where the
surface orders alone, whereas the bulk remains disordered.
Concomitantly, the special transition point, where both
surface and bulk are critical, and the extraordinary transi-
tion, where the bulk orders in presence of an ordered
surface, are also absent. In fact, whereas for the equilib-
rium system is it possible to shift the phase transition
temperature of the two-dimensional surface kBT

2d
c ¼

2:269 � � � Js above the bulk transition temperature
kBT

3d
c ¼ 4:5115Jb by sufficiently increasing the ratio

Js=Jb of the couplings, a similar mechanism does not exist
in the kinetic Ising model.

Finally, for Js > 1:5Jb, we can again measure the sur-
face critical exponents through a finite-size scaling analy-
sis. As shown in Fig. 5, corrections to scaling are much
more important in three than in two dimensions. Based on
our data, we obtain �1=� ¼ 0:88ð3Þ and �11=� ¼ 0:29ð3Þ.
These values again differ markedly from the known values
�e

1=� ¼ 1:27 and �e
11 ¼ �0:40 of the corresponding sur-

face critical exponents [38]. Most notably, whereas in the
equilibrium system the surface susceptibility displays a
cusp singularity characterized by a negative critical expo-
nent, in our system the surface susceptibility diverges with
a positive critical exponent.

As we mentioned in the introductory remarks, a
symmetry argument put forward in Ref. [30] states that
continuous transitions with up-down symmetry and non-
conserved order parameter should fall into the universality
class of the ordinary Ising model. This indeed agrees with
our own results (as well as with previous results [24,31])
that the bulk critical exponents at the dynamic phase
transition are the same as that of the equilibrium Ising
model, and this both in two and three dimensions.

However, once surfaces are introduced, the lattice symme-
try is broken close to the surfaces, and one of the assump-
tions underlying the argument of Ref. [30] is no longer
fulfilled. Indeed, our results show that the dynamic surface
exponents differ from the surface exponents of the equi-
librium model, yielding new nonequilibrium surface uni-
versality classes. Using field-theoretical methods similar to
those developed for equilibrium critical surfaces [37,38], it
should be possible to compute these new exponents and to
classify the possible dynamic surface universality classes.
It follows from our work that our understanding of the

role played by surfaces in nonequilibrium systems, and
more specifically at nonequilibrium phase transitions, is far
from being complete. Surfaces break lattice symmetries,
and this can have many surprising and unexpected effects
out of equilibrium, as exemplified in our study of surface
critical behavior at a dynamic phase transition. Based on
our results, we expect that future in-depth studies of the
role of surfaces far from equilibrium will reveal additional
new and unexpected phenomena.
This work was supported by the U.S. National Science

Foundation through Grants No. DMR-0904999 and
No. DMR-1205309.
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[6] P. Fröjdh, M. Howard, and K. B. Lauritsen, Int. J. Mod.

Phys. B 15, 1761 (2001).
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