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Using a Fermi-Bose mixture of ultracold atoms in an optical lattice, we construct a quantum simulator

for a Uð1Þ gauge theory coupled to fermionic matter. The construction is based on quantum links which

realize continuous gauge symmetry with discrete quantum variables. At low energies, quantum link

models with staggered fermions emerge from a Hubbard-type model which can be quantum simulated.

This allows us to investigate string breaking as well as the real-time evolution after a quench in gauge

theories, which are inaccessible to classical simulation methods.
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Recently, the condensed matter and atomic physics
communities have mutually benefited from synergies
emerging from the quantum simulation of strongly corre-
lated systems using atomic setups [1–4]. In particular,
physically interesting quantum many-body systems,
which can not be solved with classical simulation meth-
ods, are becoming accessible to analog or digital quantum
simulation with cold atoms, molecules, and ions. In the
future, quantum simulators may also enable us to address
currently unsolvable problems in particle physics, includ-
ing the real-time evolution of the hot quark-gluon plasma
emerging from a heavy-ion collision or the deep interior
of neutron stars [5].

The challenge on the atomic physics side is to find a
physical implementation of gauge theories with cold
atoms, and to identify possible atomic setups representing
dynamical gauge fields coupled to fermionic matter.
Below we provide a toolbox for a Uð1Þ lattice gauge
theory (LGT) using atoms in optical lattices [1,3]. Here
fermionic atoms represent matter fields. They hop be-
tween lattice sites and interact with dynamical gauge
fields on the links embodied by bosonic atoms. The
LGT to be implemented is a so-called quantum link
model (QLM) [6–8], where the fundamental gauge vari-
ables are represented by quantum spins. QLMs extend the
concept of Wilson’s LGT [9]. In particle physics they
provide an alternative nonperturbative formulation of dy-
namical Abelian and non-Abelian gauge field theories
[8,10,11]. QLMs are also relevant in condensed matter
contexts, like spin liquids and frustrated systems [12–14].
Their Hamiltonian formulation provides a natural starting
point for quantum simulation protocols based on atomic
gases in optical lattices [15–19]. We will illustrate atomic
quantum simulation of an Abelian QLM in a 1D setup,

demonstrating both dynamical string breaking and the
real-time evolution after a quench, which are also relevant
in QCD. The quantum simulator discussed below makes
the corresponding real-time dynamics, which is exponen-
tially hard for classical simulations based on Wilson’s
paradigm [20], accessible to atomic experiments.
Cold quantum gases provide a unique experimental

platform to study many-body dynamics of isolated quan-
tum systems. In particular, cold atoms in optical lattices
realize Hubbard dynamics for both bosonic and fermi-
onic particles, where the single particle and interaction
terms can be engineered by external fields. The remark-
able experimental progress is documented by the quanti-
tative determination of phase diagrams in strongly
interacting regimes, the study of quantum phase transi-
tions, and nonequilibrium quench dynamics [21–25].
One of the most exciting recent developments are syn-
thetic gauge fields with atoms, which promise the real-
ization of strongly correlated many-body phases, such
as, e.g., the fractional quantum Hall effect with atoms
[26–31]. A fermion that is annihilated by c y and recre-

ated by c y
x at a neighboring site x, which propagates in

the background of a classical Abelian vector potential ~A

gives rise to the hopping term c y
x uxyc y with uxy ¼

expði’xyÞ. Hopping between the adjacent lattice sites x

and y accumulates the phase ’xy ¼
R
y
x d

~l � ~A. The hop-

ping term is invariant against Uð1Þ gauge transformations
~A0 ¼ ~A� ~r� [32,33]. When a fermion hops around a
lattice plaquette hwxyzi, it picks up a gauge invariant

magnetic flux phase expði�Þ ¼ uwxuxyuyzuzw, with � ¼R
d2 ~f � ~r� ~A. We emphasize that these synthetic gauge

fields are c numbers mimicking an external magnetic
field for the (neutral) atoms.
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Instead, here we are interested in dynamical gauge
fields as they arise in particle physics [34]. The corre-
sponding fundamental bosonic degrees of freedom Uxy

are no longer related to an underlying classical back-

ground field ~A, but represent quantum operators associ-
ated with the lattice links. The hopping of the fermions is
now mediated by the bosonic gauge field via the term

c y
xUxyc y, which is invariant under local changes of

matter and gauge degrees of freedom U0
xy ¼ VyUxyV ¼

expði�xÞUxy expð�i�yÞ, c 0
x ¼ Vyc xV ¼ expði�xÞc x,

V ¼ Q
x expði�xGxÞ, and Gx ¼ c y

x c x �
P

iðEx;xþî �
Ex�î;xÞ. Here Ex;xþî is an electric field operator associated

with the link connecting x and y ¼ xþ î, where î is a
unit-vector in the i direction. Gx is the generator of gauge
transformations (see Supplemental Material [33] for a
detailed discussion). Gauge invariant physical states
must obey Gauss’ law, Gxj�i ¼ 0, which is the lattice

variant of ~r � ~E ¼ � ¼ c yc . To ensure gauge covari-
ance of Uxy, it must obey ½Exy; Uxy� ¼ Uxy. The

Hamiltonian representing the electric and magnetic field

energy of a compact Uð1Þ LGT, H ¼ g2

2

P
hxyiE2

xy �
1
4g2

P
hwxyzi (UwxUxyUyzUzw þ H:c:), is gauge invariant,

i.e., ½H;Gx� ¼ 0. In Wilson’s LGT, the link variables
Uxy ¼ expði’xyÞ 2 Uð1Þ are still complex phases, and

Exy ¼ �i@=@’xy. Since Uxy is a continuous variable,

which implies an infinite-dimensional Hilbert space per
link, it is not clear how to implement it in ultracold
matter, where one usually deals with discrete degrees of
freedom in a finite-dimensional Hilbert space.

Quantum link models offer an attractive framework
for the quantum simulation of dynamical gauge fields
[8,10,11]. They extend the concept of a LGT to systems
of discrete quantum degrees of freedom with only a finite-
dimensional Hilbert space per link. In contrast to the
Wilson formulation, QLMs resemble a quantum rather
than a classical statistical mechanics problem. The relation
½Exy; Uxy� ¼ Uxy is then realized by a quantum link opera-

tor Uxy ¼ Sþxy which is a raising operator for the electric

flux Exy ¼ S3xy associated with the link connecting neigh-

boring lattice sites x and y. A local SUð2Þ algebra is

generated by a quantum spin ~Sxy with just 2Sþ 1 states

per link (see Ref. [33]). We will consider quantum
links with S ¼ 1

2 or 1. In the classical limit S ! 1
QLMs reduce to the Hamiltonian formulation [35,36] of
Wilson’s LGT.

The implementation of quantum link models in ultracold
matter requires the realization of a gauge invariant
Hamiltonian accompanied by the corresponding Gauss
law. Here, we present a general procedure to obtain Uð1Þ
QLMs including both gauge and matter fields. To illustrate
our method, we focus on a simple example, a 1D Uð1Þ
QLM coupled to so-called staggered fermions with the
Hamiltonian

H ¼ �t
X

x

½c y
xUx;xþ1c xþ1 þ H:c:�

þm
X

x

ð�1Þxc y
x c x þ g2

2

X

x

E2
x;xþ1: (1)

Here t is the hopping parameter [see Fig. 1(a)], m is the
fermion mass, and g is the gauge coupling. In this case, the

gauge generator is given by ~Gx ¼ Gx þ 1
2 ½ð�1Þx � 1�.

Staggered fermions are analogous to spinless fermions at
half-filling in condensed matter physics. The correspond-
ing vacuum represents a filled Dirac sea of negative energy
states. For S ¼ 1, t ¼ 0, and m> 0 the vacuum state has

Ex;xþ1 ¼ 0 and c y
x c x ¼ 1

2 ½1� ð�1Þx�. The corresponding
vacuum energy of a system with L sites is E0 ¼ �mL=2.
The above Hamiltonian resembles the Schwinger model
[37]. For S ¼ 1 it shares the nonperturbative phenomenon
of string breaking by dynamical q �q pair creation with
QCD [38]. An external static quark-antiquark pair �QQ
(with the Gauss law appropriately taken into account) is
connected by a confining electric flux string [Fig. 1(c),
top], which manifests itself by a large value of the electric
flux. For t ¼ 0, the energy of this state is Estring � E0 ¼
g2ðL� 1Þ=2, and the flux is given by hPxEx;xþ1i¼�Lþ1.
At sufficiently large L, the string’s potential energy is
converted into kinetic energy by fermion hopping, which
amounts to the creation of a dynamical quark-antiquark
pair q �q. In this process, which is known as string breaking,
an external static antiquark �Q pairs up with a dynamical
quark to form a �Qq meson. For t ¼ 0, the resulting two-
meson state of Fig. 1(c) (bottom) has an energy Emesons �
E0 ¼ g2 þ 2m and a small flux hPxEx;xþ1i ¼ �2. The

FIG. 1 (color online). (a) Correlated hop of a fermion assisted
by Ux;xþ1 � Sþx;xþ1 consistent with Gauss’ law in a QLM with

spin S ¼ 1. (b) Realization of the process in (a) with bosonic and
fermionic atoms in an optical superlattice (see text). (c) Breaking
of a string connecting a static �QQ pair: from an unbroken string
(top), via fermion hopping (middle), to two mesons separated by
vacuum (bottom). (d) From a parity-invariant staggered flux state
(top), via fermion hopping (middle), to the vacuum with sponta-
neous parity breaking.
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energy difference Estring�Emesons¼g2ðL�3Þ=2�2m¼0

determines the length L ¼ 4m=g2 þ 3 at which the string
breaks.

Another nonperturbative process of interest in particle
physics is the real-time evolution after a quench. In par-
ticular, the quark-gluon plasma created in a heavy-ion
collision quickly returns to the ordinary hadronic vacuum.
This is accompanied by the spontaneous breakdown of the
quark’s chiral symmetry. The dynamics after a quench can
be quantum simulated by using the S ¼ 1

2 representation

for the electric flux (which mimics the Schwinger model at
vacuum angle � ¼ � [37]). In that case, like chiral sym-
metry in QCD, for m> 0 parity is spontaneously broken,
at least for small t, for more details see Supplemental
Material [33]. A quenched parity-invariant staggered flux
state, which evolves into the true vacuum with spontaneous
parity breaking, is schematically illustrated in Fig. 1(d).
In this case, the electric flux represents an order parameter
for spontaneous parity breaking, which is expected to
perform coherent oscillations. This is similar to the time
evolution after a quench starting from a disoriented chiral
condensate in QCD [39].

The realization of an atomic LGT simulator requires
(i) the identification of physical degrees of freedom to
represent fermionic particles and bosonic quantum link
variables, (ii) to impose the Gauss law in order to remove
the gauge variant states, and (iii) to design the desired
dynamics in the gauge invariant subspace. Below we de-
velop a rather general atomic toolbox to implement Uð1Þ
lattice gauge models coupled to matter fields based on
mixtures of cold fermionic and bosonic atoms in optical
lattices. Within this toolbox, we consider two different
microscopic realizations in terms of Hubbard models,
model I and II. Below we present in some detail the
conceptually simpler model I (see Fig. 2), which assumes
two-component bosons representing gauge fields.
Model II, discussed in the Supplemental Material [33],
assumes one component bosons with magnetic or electric
dipolar interactions; it offers better scalability and
experimental feasibility. Our concepts generalize immedi-
ately to experiments in 2D and 3D, and to fermions with
spin [33]. (i) The spin S ¼ 1

2 ; 1; . . . representing the quan-

tum link can be realized with a fixed number N ¼ 2S of
bosonic atoms in a double well potential with tunnel
coupling [Fig. 1(b)]. An optical superlattice [40,41]
(Fig. 2) provides an array of double wells with different
depths, and a Mott insulator phase of bosons allows
loading with the desired number of atoms N. For two
neighboring sites x and xþ 1, with b�x and b�xþ1 denoting
the boson destruction operators in the corresponding
wells, we define a Schwinger representation for the quan-
tum link

Ux;xþ1 ¼ b�yxþ1b
�
x ; Ex;xþ1 ¼ 1

2
ðb�yxþ1b

�
xþ1 � b�yx b�x Þ: (2)

The electric flux is related to the population difference of
the two sites. Here the bosonic species index � ¼ 1, 2
distinguishes between links originating from even and odd
sites x. Equation (2) requires that each boson can tunnel
only to one specific neighboring site, based on a term

hBx;xþ1 ¼ �tBb
�y
xþ1b

�
x þ H:c: The number of bosonic atoms

is conserved locally on each link. In the Supplemental
Material [33] we discuss model II with just a single bosonic
species, by encoding � in the geometric location of the
bosons to the left or to the right of the site x. We now
also add spinless fermionic atoms at half-filling to our
superlattice setup, which can hop between neighboring

sites based on the term hFx;xþ1 ¼ �tFc
y
xþ1c x þ H:c.

(ii) Gauss law: Using b�yx b�x þ b�yxþ1b
�
xþ1 ¼ 2S, the gauge

generator reduces to

~Gx ¼ nFx þ n1x þ n2x � 2Sþ 1

2
½ð�1Þx � 1�: (3)

Here n�x counts the atoms of type � ¼ F, 1, 2. Up to an

x-dependent constant, ~Gx thus counts the total number of
atoms at the site x. To impose the Gauss law, we consider

interaction terms which can be rewritten in the form U ~G2
x

as the dominant term in the Hamiltonian, so that all gauge
variant states are removed from the low-energy sector. This
is reminiscent of the repulsive Hubbard model for a Mott
insulator [1]. In this sense, the gauge invariant states
(which obey nFx þ n1x þ n2x ¼ 2Sþ 1

2 ½1� ð�1Þx�) can be

viewed as super-Mott states. (iii) It is well known that, for

FIG. 2 (color online). Schematic view of the optical super-
lattices for one fermionic and two bosonic species 1 and 2
(model I). (a) Species 1 can hop between an even site x and
the odd site x� 1, while species 2 can hop between x and xþ 1.
(b) Illustration of various contributions to the Hamiltonian.
Fermions and two-component bosons have on-site repulsions
U1F ¼ U2F ¼ U12 ¼ 2U, while bosons of the same species have
U11 ¼ U22 ¼ 2Uþ g2=2� t2B=U. The offsets of the bosonic
and fermionic superlattices are 2U1 ¼ 2U2 ¼ 2U and 2UF ¼
2ðUþmÞ, respectively. If the fermion hops to the left, it picks up
the energy offset 2U from a boson of species 2 which simulta-
neously tunnels to the right.
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large on-site repulsion, the Hubbard model reduces to the
t-J model [42]. We now induce the dynamics of a
Uð1Þ QLM in a similar manner, by considering the 1D

microscopic Hamiltonian ~H ¼ P
xh

B
x;xþ1 þ

P
xh

F
x;xþ1 þ

m
P

xð�1ÞxnFx þU
P

x
~G2
x. Up to an additive constant, it

can be expressed as

~H ¼ �tB
X

x odd

b1yx b1xþ1 � tB
X

x even

b2yx b2xþ1 � tF
X

x

c y
x c xþ1

þ H:c:þ X

x;�;�

n�x U��n
�
x þX

x;�

ð�1ÞxU�n
�
x : (4)

The last two terms describe repulsive on-site interactions
as well as superlattice offsets, and form the basic building

block for the Gauss term U
P

x
~G2
x. The various contribu-

tions to the Hamiltonian are illustrated in Fig. 2(b). The
QLM of Eq. (1) with t ¼ tBtF=U emerges in second order
perturbation theory, if one tunes the parameters to the
values listed in Fig. 2(b). The offsets U� give rise to an
alternating superlattice for both the fermions and the bo-
sons. In analogy to superexchange interactions [41], energy
conservation enforces a correlated hop of the fermion
with the spin-flip on the link, thus realizing the term

�tc y
xUx;xþ1c xþ1. This is the key ingredient for the cou-

pling of fermions and quantum links. Additionally, a gauge

invariant term �F

P
xc

y
x c x½1� c y

xþ1c xþ1� is also gener-

ated [33]. The reduction of the microscopic model of
Eq. (4) to the QLM of Eq. (1) has been verified both at
the few- and many-body level, is schematically illustrated
in Figs. 3(a) and 3(b), and is extensively discussed in
Ref. [33].

We have performed exact diagonalizations on small
system sizes to quantitatively show the physical phe-
nomena of string breaking and the dynamics after a quench
which can be observed in an experiment. The main results
are presented in Figs. 3(c) and 3(d). For S ¼ 1, we evolve a
string state initially prepared as in Fig. 1(c) under
Hamiltonian parameters such that the separation between
charge and anticharge is larger than the characteristic scale
for string breaking L ¼ 4m=g2 þ 3. Indeed, the large
negative electric flux initially stored in the string quickly
approaches its vacuum value, illustrating the string break-
ing mechanism. For S ¼ 1

2 , Fig. 3(d) also shows the time

evolution after a quench, starting from the parity-invariant
state at the top of Fig. 1(d). In fact, the electric flux, which
is an order parameter for spontaneous parity breaking,
displays coherent oscillations, reminiscent of a disoriented
chiral condensate in QCD [39]. A general experimental
implementation, which will require three basic steps
(preparation of an initial gauge invariant state, evolution
via quantum link dynamics, and measurement of relevant
physical observables), is discussed in the Supplemental
Material [33].

In the present Letter, we have proposed a quantum
simulator of lattice gauge theories, where bosonic gauge

fields are coupled to fermionic matter, allowing demon-
stration experiments for phenomena such as time-
dependent string breaking and the dynamics after a quench.
While the basic elements behind our model have been
demonstrated individually in the laboratory, the combina-
tion of these tools and the extension to higher dimensions
remain a challenge to be tackled in future generations of
optical lattice experiments. While building a QCD quan-
tum simulator to address questions related to nonzero
baryon density and real-time evolution remains a long
term goal, we see no fundamental obstacles on the atomic
physics side, but rather a long list of challenges such as
incorporation of multicomponent quark fields and non-
Abelian plaquette terms in higher dimensions. A realistic
pathway will be the investigation of increasingly complex
(quantum link) models in an interplay between theory and
experiment, with the short term goals of extending the
present study to higher dimensions and in particular non-
Abelian gauge field models.
We thank D. B. Kaplan, M. Lewenstein, B. Pasquiou,

F. Schreck, and M. Zaccanti for discussions. P. Z. and
M.D. thank the Joint Quantum Institute for hospitality.
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FIG. 3 (color online). (a) Flux configuration in the ground state
of Eq. (4) compared to the QLM for S ¼ 1

2 obtained by exact

diagonalization of an L ¼ 8 site system. The parameters of the
QLM (in units of tF ¼ tB ¼ 1) are t ¼ 0:05, �F ¼ �0:05 (see
Supplemental Material [33]), and m ¼ �0:2, 0, 0.2 (squares,
crosses, and circles). The corresponding microscopic parameters
are U ¼ 20 and m ¼ �0:2, 0, 0.2 (dashed-dotted, dashed, and
solid lines). (b) Accuracy of the effective gauge invariance
parameter G ¼ P

xjhGxij=L in the microscopic realization as a
function of tF=U. (c, d) Real-time evolution of the total electric
flux E ¼ P

xEx;xþ1 obtained by exact diagonalization of the

QLM with L ¼ 16. (c) For S ¼ 1 (solid line) string breaking
is illustrated, starting from the initial state at the top of Fig. 1(c),
and approaching the corresponding vacuum expectation value
(dashed-dotted line) of E ¼ P

xEx;xþ1 (g2 ¼ ffiffiffi
2

p
t > 0, m ¼ 0,

�F ¼ � ffiffiffi
2

p
t; critical breaking length Lc ¼ 3 when t ¼ 0).

(d) For S ¼ 1
2 we show the evolution after a quench, starting

from the initial state at the top of Fig. 1(d). The flux order
parameter performs coherent oscillations whose period and
strength strongly depends on m (m=t ¼ 0:6ð0:9Þ for dashed
(thick) line, �F ¼ 10t).
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fermions).

[1] M. Lewenstein, A. Sanpera, and V. Ahufinger, Ultracold
Atoms in Optical Lattices: Simulating Quantum Many-
Body Systems (Oxford University Press, New York, 2012).

[2] J. Cirac and P. Zoller, Nat. Phys. 8, 264 (2012).
[3] I. Bloch, J. Dalibard, and S. Nascimbène, Nat. Phys. 8, 267

(2012).
[4] R. Blatt and C. F. Roos, Nat. Phys. 8, 277 (2012).
[5] K. Rajagopal and F. Wilczek, Handbook of QCD, edited

by M. Shifman (World Scientific, Singapore, 2000).
[6] D. Horn, Phys. Lett. 100B, 149 (1981).
[7] P. Orland and D. Rohrlich, Nucl. Phys. B338, 647 (1990).
[8] S. Chandrasekharan and U. J. Wiese, Nucl. Phys. B492,

455 (1997).
[9] K. Wilson, Phys. Rev. D 10, 2445 (1974).
[10] R. Brower, S. Chandrasekharan, and U. J. Wiese, Phys.

Rev. D 60, 094502 (1999).
[11] R. Brower, S. Chandrasekharan, S. Riederer, and U. J.

Wiese, Nucl. Phys. B693, 149 (2004).
[12] L.M. Duan, E. Demler, and M.D. Lukin, Phys. Rev. Lett.

91, 90402 (2003).
[13] M. Hermele, M. P. A. Fisher, and L. Balents, Phys. Rev. B

69, 064404 (2004).
[14] M. Levin and X. Wen, Rev. Mod. Phys. 77, 871 (2005).
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Büchler, Nat. Phys. 6, 382 (2010).
[18] J. I. Cirac, P. Maraner, and J. K. Pachos, Phys. Rev. Lett.

105, 190403 (2010).
[19] E. Kapit and E. Mueller, Phys. Rev. A 83, 033625 (2011).
[20] M. Troyer and U. J. Wiese, Phys. Rev. Lett. 94, 170201

(2005).

[21] S. Nascimbène, N. Navon, K. Jiang, F. Chevy, and
C. Salomon, Nature (London) 463, 1057 (2010).

[22] S. Trotzky, L. Pollet, F. Gerbier, U. Schnorrberger, I.
Bloch, N. Prokof’ev, B. Svistunov, and M. Troyer, Nat.
Phys. 6, 998 (2010).

[23] K. Van Houcke, F. Werner, E. Kozik, N. Prokof’ev, B.
Svistunov, M. Ku, A. Sommer, L. Cheuk, A. Schirotzek,
and M. Zwierlein, Nat. Phys. 8, 366 (2012).

[24] X. Zhang, C. Hung, S. Tung, and C. Chin, Science 335,
1070 (2012).

[25] S. Trotzky, Y. Chen, A. Flesch, I. McCulloch, U.
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