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Intrinsic Rotation of Toroidally Confined Magnetohydrodynamics
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The spatiotemporal self-organization of viscoresistive magnetohydrodynamics in a toroidal geometry is
studied. Curl-free toroidal magnetic and electric fields are imposed. It is observed in our simulations that a
flow is generated, which evolves from dominantly poloidal to toroidal when the Lundquist numbers are
increased. It is shown that this toroidal organization of the flow is consistent with the tendency of the
velocity field to align with the magnetic field. Up-down asymmetry of the geometry causes the generation

of a nonzero toroidal angular momentum.
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Introduction.—The magnetic confinement of fusion
plasmas is strongly influenced by turbulent fluctuations.
These fluctuations degrade the quality of the confinement
and thereby reduce the performance of the fusion reactor. It
was discovered three decades ago [1] that, under certain
circumstances, the turbulent activity is reduced, leading to
a better confinement. Still today the understanding of this
low-to-high-confinement transition is far from complete.
There is, however, strong evidence that large toroidal
velocities of the plasma are a feature that is either at the
origin, or a consequence of, the mechanism that is respon-
sible for this transition [2,3]. Large toroidal velocities, of
the order of several kilometers per second, are observed
even in the absence of external momentum input. Several
mechanisms are put forward to explain the toroidal rota-
tion, mostly based on the turbulent transport of toroidal
momentum generated at the tokamak edge (e.g., in
Refs. [4-6]). In this Letter we present a mechanism which
seems to be generic, since it is observed even in one of the
coarsest descriptions of a fusion plasma: viscoresistive
magnetohydrodynamics (MHD).

A MHD description of fusion plasmas.—In the MHD
description, the plasma is described as a charge-neutral
conducting fluid. MHD, despite its low level of complexity
compared to kinetic descriptions or two-fluid descriptions,
already gives rise to a wealth of intricate phenomena and
its analytical treatment is only possible in some simplified
cases, either in the absence of velocity fields [7,8] or in the
absence of nonlinear interactions [9]. We will come back to
these analytical approaches, but before that, we present
the equations that we consider. These are the dimensionless
incompressible viscoresistive MHD equations for the ve-
locity field u and for the magnetic field B, in Alfvénic
units [10],
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with the current density j = V X B, the vorticity @ =
V X u, the pressure P, and the electric field E. These
equations are nondimensionalized using the toroidal
Alfvén speed C4 = By/,/pit as typical velocity, with
B, the reference toroidal magnetic field at the center of
the torus (R = R;), p the density, and w, the magnetic
constant. The reference length L (see Fig. 1) is the diame-
ter of the cross section for the circular case and is the minor
diameter for the asymmetric D shape (L = 1.88 for both
geometries). The dynamics are then governed by the initial
and boundary conditions of the problem, and two dimen-
sionless quantities: the viscous Lundquist number (M) and
the Lundquist number (S) defined as
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FIG. 1. Cross sections of the toroidal geometries considered in

the present work. The toroidal angle is labeled 6 and the poloidal
one ¢.
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with A the magnetic diffusivity and v the kinematic vis-
cosity. The ratio of these two quantities is the magnetic
Prandtl number Pr = /A, which we have chosen unity in
the present study, thereby reducing the number of free
parameters, which characterize the magnetofluid, to one,
the viscous Lundquist number. Previous investigations in-
dicate that it is the geometric mean of the viscosity and the
magnetic diffusivity which determines the dynamics
[11,12]. In setting the Prandtl number to one, a change in
the Lundquist numbers, M or S, is equivalent to a change in
the Hartmann number.
Let us now go back to the analytical description of
viscoresistive MHD. In the static case in which u = 0,
Eq. (1) reduces to an equilibrium

VP =jXB. (6)

In a cylindrical geometry this equilibrium can be achieved
by various magnetic configurations such as the z pinch or
the @ pinch [13]. In toroidal geometry it is problematic to
obtain such an equilibrium, as we will now explain. We
consider the case in which the driving toroidal electric field
is curl-free within the plasma, over times of interest, such
that E, ~ 1/R. Further we assume the toroidal magnetic
field to obey the same scaling, which follows from the
integration of Ampere’s law on a toroidal loop. In the
simplest case, we choose a space-uniform electrical con-
ductivity such that the toroidal current induced by the
electric field is also given by the same dependence, so
that the externally imposed magnetic field and toroidal,
laminar, voltage-driven current density are given by,

R
Jo(R) = JO—Oeg. (7)
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Computing the Lorentz force resulting from these toroidal
fields, taking into account the poloidal magnetic field
induced by J, results in a force field which is not curl-
free [14]. Since the curl of the pressure gradient is neces-
sarily zero, the equilibrium described by (6) becomes
impossible and additional terms of Eq. (1) need to be taken
into account to balance the equation. Since all other terms
in (1) are proportional to (or quadratic in) the velocity, the
resulting state must be dynamic. That is, a toroidal plasma,
described by viscoresistive MHD, confined by curl-free
toroidal electric and magnetic fields, necessarily moves.
It is true that the rationale described above depends on
the choice of the electric conductivity, which was assumed
to be uniform. It was however shown [15,16] that to satisfy
(6) in a torus, very unusual profiles of the electrical con-
ductivity must be assumed. We omit these rather unphys-
ical cases and focus on the dynamical plasma behavior
which results for the simplest, uniform, conductivity
profile.

It follows from the foregoing that it is necessary to take
into account all other terms in the MHD equations, and
analytical treatment becomes impossible unless symme-
tries are assumed. To study the full dynamics we are obliged
to solve numerically the system and this is what is done in
the present investigation. Such fully three-dimensional non-
stationary simulations, taking into account all relevant time
and space scales, are computationally demanding and only
quite recently have the necessary resources and numerical
methods become available to do such simulations.
Equations (1)—(4) are discretized with a Fourier pseudo-
spectral method on a Cartesian grid. To impose the bound-
ary conditions we use the volume-penalization technique, a
method of the immersed boundary type, which we consider
a good compromise between the ease of implementation,
flexibility in geometry, and the numerical cost of the simu-
lation. Results for two-dimensional MHD can be found in
Ref. [17]. We recently extended this method to study the
three-dimensional viscoresistive MHD equations [18], and
in the present Letter we present the results of three-
dimensional simulations in two toroidal geometries.

Results of numerical simulations.—Details of the nu-
merical method are given in Ref. [18]. Simulations are
carried out on a cubic domain of size 27 consisting of
256° grid points for the highest values of M. The initial
condition for the simulations is zero magnetic fluctuations
and zero velocity, and no-slip velocity boundary conditions
are imposed. We consider the boundaries of the fluid
domain as perfectly conducting and coated with an infi-
nitely thin layer of insulator. Thereby the normal compo-
nent at the wall of the magnetic and current density fields
vanishes. We impose toroidal magnetic and current density

FIG. 2 (color online).

Streamlines colored by the value of the
toroidal velocity, u, for M = 15 (top) and M = 150 (bottom) in
the geometry with circular cross section. Only a part of the
toroidal domain is shown.
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FIG. 3 (color online). The ratio of the mean-square toroidal
velocity to the total mean-square velocity (u3)/(lu’l) as a
function of M. In the inset we show the average over the domain
of the absolute value of the cosine of the angle between the
velocity field and magnetic field.

fields given by Eq. (7). The Biot-Savart law is used to
determine the poloidal magnetic field induced by the to-
roidal current Jo(R). All the simulations presented in this
communication are performed with By = 0.8 and
Jo = 0.3. This corresponds, for both geometries, to a pinch
ratio ® = 0.16, defined as the ratio between the wall-
averaged poloidal and the volume-averaged toroidal mag-
netic field (® = B,/(By)). The only parameter that we
vary is the Lundquist number M. The simulations are time
dependent and they are stopped when a dynamical steady
state is reached.

The results in Fig. 2 show the presence of a poloidal
flow, a pair of counterrotating vortices in the r-¢ plane. For
small M the dynamics are dominantly poloidal, as is ex-
pected. Indeed, in the limit of vanishing nonlinearity,
Bates and Montgomery [9] showed analytically that the
steady state solution is a pair of poloidally rotating vorti-
ces, aligned with the toroidal direction. For nonzero
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FIG. 4 (color online).

nonlinearity, i.e., by increasing M, the vortices start mov-
ing in the toroidal direction, both in the opposite direction.
Their toroidal velocity increases with the Lundquist
number M in the two considered geometries. The three-
dimensional velocity streamlines show a substantial
change of topology from dominantly poloidal to domi-
nantly toroidal flow (see Fig. 2, bottom). This is quantified
in Fig. 3, where we observe that the principal direction of
the flow motion is toroidal if M is raised beyond ~40. The
square toroidal velocity saturates for increasing M at a
value of ~86% of the total square velocity. This toroidal
organization of the flow is consistent with the tendency of
the velocity field to align with the magnetic field, as is
illustrated in the inset of Fig. 3, where we compute the
average (over the toroidal domain) of the absolute value of
the cosine of the angle between the velocity and magnetic
field. This quantity is equal to one if the velocity and
magnetic field are perfectly aligned or antialigned. It is
shown that the trend towards a toroidal velocity follows
exactly the same M dependence as the alignment.

This tendency towards a dominant toroidal flow is simi-
lar for the torus with the asymmetric cross section as is
shown in Fig. 3, while the alignment is even more pro-
nounced. In both geometries, the generated velocity field
contains non-negligible fluctuations. The quantities u’ and
B’ denote the fluctuations around the azimuthally averaged
instantaneous velocity and magnetic field, respectively.
At M = 3008 in the D-shaped geometry, wl,./tms =
6.7 X 1072, Blo/Bums = 1.5 X 1073 and /By =
3.2 X 1073, The rms values correspond here to volume
averages over the toroidal domain. A detailed investigation
of the spatial distribution of these fluctuations and its
dependence on M will be presented elsewhere.

A fundamental difference is observed between the flows
that are generated in the two geometries. The volume-
averaged toroidal angular momentum is defined by
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Azimuthally averaged flow visualizations: toroidal velocity uy for M = 15 (a), M = 752 (b), and M = 3008

(c). (d) Toroidal velocity profiles along a vertical cut. The position of these cuts is indicated in (a), (b), (c) by a dotted vertical line.
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FIG. 5 (color online). Normalized toroidal angular momentum
[{Lg)l/Ly . as a function of M observed in the tori with
asymmetric and symmetric cross section, respectively.

For the torus with circular cross section, this quantity is
zero to a good computational approximation, due to the up-
down symmetry of the observed flow. However, for the
torus with asymmetric cross section this is not the case. For
low M, a poloidal pair of counterrotating vortices appears
(see Fig. 4 for azimuthally averaged flow visualizations,
and toroidal velocity profiles along a vertical cut) as for the
circular cross section. Similarly, if the viscous Lundquist
number is increased, an important toroidal flow develops.
Unlike the symmetric case, there is a breaking of the
symmetry in the flow and the part of the flow moving in
the negative direction (the red zone) becomes larger at the
expense of the part of the flow which moves in the positive
toroidal direction (blue zone). This symmetry breaking,
illustrated in Fig. 4, leads to the development of a net
toroidal flow. The toroidal angular momentum becomes
hereby nonzero (see Fig. 5). Its normalized value increases
significantly with the viscous Lundquist number. The ob-
served influence of up-down symmetry is consistent with
axisymmetric time-independent computations [10] and
is also observed in gyrokinetic simulations and experi-
ments [19,20].

It is presently not clear if the velocity profile observed in
our simulations will change qualitatively when M is in-
creased further and a transition to another flow topology
cannot be excluded. Also have we not yet investigated the
influence of the magnetic Prandtl number. It is at this point
perhaps important to say that we do not know what the
viscosity should be to approximate the dynamics of experi-
ments. However, the fact that this feature is observed in
fully resolved simulations of the viscoresistive MHD equa-
tions is a result of major importance, since it shows how
intrinsic toroidal rotation is present in one of the coarsest
global descriptions of a fusion plasma, without invoking
arguments on charge non-neutrality or kinetic theory.

Conclusion.—We want to summarize the results that
we obtained: considering curl-free toroidal electric and

magnetic fields and constant transport coefficients, visco-
resistive magnetofluids spontaneously generate velocity
fields. This velocity field aligns (or antialigns) with the
magnetic field, thereby generating a toroidal component.
This is a nonlinear effect which becomes negligible in the
limit of small Lundquist number. Furthermore, toroidal
angular momentum is created, if the up-down symmetry
of the torus is broken.

By its simplification, both in terms of the used model
equations, as well as in terms of the parameter range
chosen for the properties of the conducting fluid, our
investigation should be considered academic rather than
directly applicable to the detailed description of existing
machines. At the same time, since MHD does give a rough
description of laboratory plasmas, the mechanism that we
have described should be present, at least qualitatively, in
existing devices. The observed MHD self-organization
thereby seems to be of major importance for the magneti-
cally confined fusion community.
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