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Presenting true crossings of adiabatic potential energy surfaces, conical intersections are a paradigm of

ultrafast and efficient electronic relaxation dynamics. The same mechanism is shown to apply also for

vibrational conical intersections, which may occur when two high-frequency modes (such as OH stretch

vibrations) are coupled to low-frequency modes (such as hydrogen bonding modes). By derivation of a

model Hamiltonian and its parametrization for a concrete example, malonaldehyde, the conditions that

such conical intersections occur are identified and the consequences for the vibrational dynamics and

spectra are demonstrated.
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Ever since their theoretical prediction by von Neumann
and Wigner in 1929 [1], conical intersections (CIs) have
become a paradigm of ultrafast photochemical or photo-
physical processes [2–4]. CIs are true crossings of two
Born-Oppenheimer (or adiabatic) potential energy surfaces
[PESs, see Fig. 1(a)], which may lead to extremely fast
and efficient transfer of population between the two elec-
tronic states. At the crossing surface the nonadiabatic
interaction diverges, which results in a complete break-
down of the Born-Oppenheimer approximation. Hence a
perturbative description of the dynamics in terms of elec-
tronic relaxation rates is not sufficient, and time-resolved
pump-probe experiments on CIs may reveal complex spec-
tral features [5–7].

The situation appears to be quite different in the case of
vibrational relaxation dynamics in the electronic ground
state. Here relaxation dynamics and transient spectra are
often well described within a perturbative approach by
simply assuming a 1=T1 relaxation rate [8–11]. However,
there are cases where—quite similar to the vibronic case—
this approach seems to break down [12]. In particular,
vibrational bands that are associated with strong hydrogen
bonding are typically very broad (many 100 cm�1),
strongly redshifted and contain a pronounced substruc-
ture due to strong anharmonic couplings to other modes
[13,14]. The nonlinear pump-probe response of these
infrared transitions, in turn, decays on an ultrafast (a few
100 fs) time scale and may exhibit complex oscillatory
features [15,16]. Also, liquid water [17] and ice [18] are
found to show an extremely fast initial signal that has been
attributed to population decay. If excess protons are added
to water (i.e., acid solutions), a continuum band covering
almost the whole mid-IR range from 1000–3000 cm�1 is
observed [19].

In this Letter, we propose that vibrational CIs may
represent a possible mechanism for ultrafast vibrational
relaxation dynamics. To introduce the general idea, we
note that an adiabatic perspective is also sometimes taken

for vibrational states, e.g., when a high-frequency mode
(such as a OH stretch vibration) is coupled to a low-
frequency mode (such as a hydrogen bond mode, whose
frequency is about 10 times lower) [14,20–23]. Solving the
Schrödinger equation for the high frequency mode with
the low frequency coordinate introduced parametrically,
this leads to potential energy surfaces for the vibrational
states of the high-frequency modes as a function of the
low-frequency coordinates. However, to the best of our
knowledge, the concept of a CI has not been used in the
context of vibrational adiabatic states. A Jahn-Teller type
of coupling has been discussed in the context of vibrational
transitions [24,25], which in fact leads to a CI dictated by
symmetry, but that connection has not been made. In this
Letter, we derive the conditions that such an intersection
occurs, present quantum-dynamical model calculations to
show the consequences for the vibrational dynamics and
spectra, and demonstrate via ab initio calculations that
low-lying vibrational CIs indeed exist in concrete molecu-
lar systems.
The minimum ingredients needed to construct a vibra-

tional CI include two high-frequency (HF) modes, q1 and

FIG. 1 (color online). (a) CI between two adiabatic PESs along
a coupling mode Q1 and a tuning mode Q2, revealing a funnel-
like shape of the PESs at the intersection point. (b) Cuts of the
vibrational PESs along Q2 for Q1 ¼ 0, using the parameters
given in Table I. The ground state wave function is excited by an
ultrashort laser pulse and subsequently propagates as indicated
by the arrow.
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q2, as well as two low-frequency (LF) modes, Q1 and Q2.
We require at least two HF modes to assure that two
vibrational states may become degenerate, either by sym-
metry via a Jahn-Teller type of coupling [24,25] or acci-
dentally (which is the case we will focus on). On the
other hand, at least two LF modes are needed because
the hypersurface of a CI is (N-2)-dimensional (N being
the number of LF modes). The Hamiltonian of the model
can be written as H ¼ H0 þHanh with

H0 ¼
X

n

!n

2
ðp2

n þ q2nÞ þ
X

j

�j

2
ðP2

j þQ2
j Þ;

Hanh ¼
X

n;m;j

fnm;jqnqmQj; (1)

where n, m, j ¼ 1, 2 and @ ¼ 1. H0 represents the har-
monic part of the Hamiltonian, expressed in terms of
vibrational frequencies (!n,�j) and dimensionless normal

mode coordinates (qn, Qj) and momenta (pn, Pj). The

anharmonic interaction Hanh is obtained via a Taylor ex-
pansion. While all cubic as well as higher-order expansion
coefficients will have an effect on the PESs in detail, we
will see that a minimal model of a vibrational CI requires
only two types of cubic expansion coefficients, the cou-
pling parameter f12;1 and the tuning parameters fnn;2.

We expand the total vibrational wave function as

j�ðQÞi ¼ X

k

�kðQÞjki; (2)

that is, the HF modes are represented by the zero-order
harmonic basis states jki ¼ j00i; j10i; j01i; . . . , where jiji
denote the number of quanta in modes q1 and q2, respec-
tively, and the LF modes are represented by the wave
functions �kðQÞ with Q ¼ fQ1; Q2g. Restricting ourselves
to the first three states jki, we represent Hamiltonian (1) as
3� 3 matrix H ¼ fhkjHjk0ig, giving

H ¼ h01þ
�00Q2 0 0

0 !1 þ �10Q2 �Q1

0 �Q1 !2 þ �01Q2

0
@

1
A;

(3)

with h0 ¼
P

j
�j

2 ðP2
j þQ2

j Þ and 1 being the unit matrix.

The diagonal elements of H consist of the LF harmonic
Hamiltonian, the excitation energy !n of the HF modes
(the zero-point energy is neglected), and the couplings
�kQ2. To obtain the latter from Eq. (1), we assumed that
mode Q2 couples only diagonal elements (i.e., fnm;2 ¼ 0
for n � m), which yields

�k ¼
X

n

fnn;2hkjq2njki: (4)

Since this LF mode modulates the vibrational excitation
energy of the HF modes [via !dia

k ðQ2Þ ¼ !k þ �kQ2], we

henceforth refer to Q2 as ‘‘tuning coordinate.’’ Note that
�00 may be nonzero, describing the deformation of the

potential energy surface with respect to the LF coordinates
upon trying to minimize the zero-point energy of the HF
modes.
Similarly, Q1 is assumed to couple exclusively off-

diagonally (i.e., fnn;1 ¼ 0), yielding

� ¼ f12;1h10jq1q2j01i ¼ f21;1h01jq2q1j10i: (5)

This way, the LF mode Q1 couples the HF modes q1 and
q2, with the amount of the mixing depending on Q1 (i.e.,
the mixing vanishes forQ1 ¼ 0). Hence wewill refer toQ1

as ‘‘coupling coordinate.’’ Generalizations of the model,

e.g., to include several tuning coordinates (via �kQ2 !P
j�

ðjÞ
k Qj), several coupling coordinates, or more than two

HF modes, are straightforward.
Although Eq. (3) was derived above to account for the

coupling of HF and LF vibrational modes, it is formally
entirely equivalent to a vibronic-coupling Hamiltonian,
consisting of the ground and two excited electronic states
that interact via vibrational tuning and coupling coordi-
nates [26]. In particular, Eq. (3) gives rise to a CI of the
adiabatic PESs of the problem. To see this, we note that
Hamiltonian (3) is given in the so-called diabatic represen-
tation, where the kinetic energy

P
j�j=2P

2
j is diagonal and

the potential energy is given as a matrix V ¼ fVk;k0 g.
Diagonalization of this potential-energy matrix yields the
adiabatic PESs of the two excited states

W�ðQ1; Q2Þ ¼ �VðQ1; Q2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�V2ðQ2Þ þ V2

CðQ1Þ
q

; (6)

where �V ¼ ðV10;10 þ V01;01Þ=2, �V ¼ ðV10;10 � V01;01Þ=2
and VC ¼ V10;01 ¼ V01;10. A CI of these two surfaces arises

for W� ¼ Wþ, that is, if �VðQ2Þ ¼ 0 and VCðQ1Þ ¼ 0.
For a single tuning and a single coupling coordinate (i.e.,
N ¼ 2), we obtain a crossing point, in general we have an
N-2-dimensional intersection surface. We note in passing
that the derivation of Hamiltonian (3) from Eq. (1) is the
converse of the so-called mapping approach [27] used in
the classical description of nonadiabatic quantum dynam-
ics, where an N-state system is mapped onto N harmonic
oscillators.
To illustrate the theory developed above, we adopt a set

of representative parameters for model Hamiltonian (3)
given in Table I. Figure 1(b) presents the resulting diabatic
PESs Vk;kðQ1; Q2Þ along Q2 for Q1 ¼ 0 for the three

considered states jki ¼ j00i; j10i and j01i, and Fig. 1(a)
focuses on the CI. We now assume that all (HF and LF)
vibrational modes of the system are initially in their ground
state and that at time t ¼ 0 an ultrashort infrared laser
pulse excites the j00i ! j10i transition of the HF mode
q1. In direct analogy to the vibronic case, this corresponds
to a vertical Franck Condon-type excitation of the LF
vibrational wave packet into the excited state j10i. Being
a nonstationary state, the wave packet will evolve on the
coupled PESs of states j10i and j01i, thus giving rise to
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nonadiabatic wave packet dynamics along the LF coordi-
nates Q1 and Q2.

A key quantity in the discussion of nonadiabatic dynam-
ics is the time-dependent population probability of the
initially prepared ‘‘diabatic’’ state j10i, P10ðtÞ, as well as
the population PadðtÞ of the corresponding ‘‘adiabatic’’
state defined via Eq. (6) [26]. Propagating the system
in time using standard methods [26], the dotted lines in
Fig. 2(a) show the evolution of P10ðtÞ and PadðtÞ for a
system with two LH modes Q1 and Q2. For the chosen
parameters, the CI (2665 cm�1) lies below the vertical
Franck Condon energy (2800 cm�1); hence, the wave
packet reaches the CI within half an oscillation period of
Q2 and there decays into state j01i. Subsequently, P10ðtÞ
and PadðtÞ are seen to exhibit prominent recurrences, which
reflects the finite level density of the two-mode model.
Increasing the level density by including a second tuning
mode damps the recurrences significantly [solid lines in
Fig. 2(a)], quite similar to findings for vibronic CIs [26].

Moreover, Fig. 2(b) shows a three-mode case where the
energy of the CI was increased to 3244 cm�1 by assuming
� 30% smaller tuning parameters. As a consequence, the
CI is energetically higher than the initial wave packet,
which results in a clearly slower relaxation of the initially
excited state. Following essentially an exponential decay,
in the case of a high-lying CI the notion of a constant
relaxation rate 1=T1 seems to becomemeaningful. Wewish
to stress, however, that these findings cannot be under-
stood on a simple perturbative level, where, e.g., the tuning

term q21Q2 / ðb̂1 þ b̂y1 Þ2ðB̂2 þ B̂y
2 Þ, that couples a doubly

excited state of q1 with a singly excited state of Q2, would
be considered to be an extremely inefficient channel for
relaxation (as !1 � �2). It is rather the (higher-order)
interplay of tuning and coupling modes that leads to the
ultrafast relaxation process of a CI.
It is interesting to study how the strong vibrational

relaxation dynamics is reflected in the time- and
frequency-resolved infrared spectra of the system. To
calculate these spectra, we employ a nonperturbative
approach [28] using resonant � 25 fs Gaussian-shaped
pump and probe pulses and assume that all of the oscillator
strength sits in mode q1, such that the laser pulses excite
and probe exclusively state j10i. To allow for excited state
absorption, we furthermore augment Hamiltonian (3) by
the doubly excited states j20i, j11i and j02i, the first of
which is lowered by 200 cm�1 from its harmonic value to
obtain the usual redshift of the 1–2 excited state absorp-
tion. Figure 3 shows the resulting transient infrared spectra
for the three-mode model. For the sake of interpretation,
the total signal (a) is decomposed into the bleach and
the stimulated emission contributions (b) and the excited
state absorption (c). While the strong negative signal of the
bleach band around !1 ¼ 2800 cm�1 hardly evolves in
time, the stimulated emission signal as well as the excited
state signal shift to the red extremely rapidly, before they
flatten and lose intensity [see feature labeled with (*) in
Figs. 3(b) and 3(c)]. This strong redshift is the hallmark of
a CI [5,26], as it directly reflects the ultrafast nonadiabatic
j10i ! j01i transition and subsequent wave packet motion
on coupled PESs [Fig. 1(b)]. The overall pump-probe
response of the simple three-mode model is qualitatively

TABLE I. Parameters (in cm�1) of the model Hamiltonian (3) employed in Figs. 1 and 2. We set �ðjÞ
00 ¼ 0 (which results in a shift of

the origin of Q2) and chose the parameters of the three-mode model such that the diagonal potential elements Vk;k along Q2 ¼ Q3 are

identical to the ones of the two-mode model shown in Fig. 1(a).

Model !1 !2 �1 � �2 �ð2Þ
10 �ð2Þ

01 �3 �ð3Þ
10 �ð3Þ

01

2 modes 2800 1650 290 200 210 300 �200 . . . . . . . . .
3 modes 2800 1650 290 200 230 232 �155 190 192 �128

FIG. 2 (color online). Time evolution of the population proba-
bility of the initially prepared ‘‘diabatic’’ state j10i [blue (dark
grey)] and the corresponding adiabatic population [red (light
grey)], following a vertical j00i ! j10i transition [Fig. 1(b)].
The dotted lines show the results for the two-mode model, solid
lines those for the three-mode model (Table I). In panel (b) all
tuning parameters of the three-mode model were reduced by
30%.

FIG. 3 (color online). Simulated pump-probe spectrum for
the three-mode model defined in Table. I. (a) Complete signal,
(b) bleach and stimulated emission contribution and (c) excited
state absorption. Signals of positive and negative sign are col-
ored in red and blue, respectively. The features labeled with (*)
are discussed in the text.
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quite similar to the experimental response of strong intra-
molecular hydrogen bonds [15,16].

It is obvious from the above discussion that vibrational
CIs do exist, since there is no reason to assume that all
tuning and coupling constants are zero in the anharmonic
PES [Eq. (1)] of a given molecule. However, it remains
to be shown that there are concrete molecular systems
which exhibit large enough couplings to yield a CI below
the initially excited Franck-Condon region. Only then
will the intersection provide mechanisms for ultrafast
population relaxation. As a proof of principle, we consider
malonaldehyde which is a prototype molecule with a
medium strong intramolecular hydrogen bond [Fig. 4(a)].
Its tunnel-splitting and intramolecular hydrogen-bond
transfer has been studied extensively [14,29–32], while
we concentrate here on the dynamics within one of
the potential energy wells. We treated the molecule on
the MP2=6-311þþ gð2df; 2pdÞ quantum-chemical level
of theory, using the Gaussian program package [33]. As HF
modes, we consider the OH stretch and bend vibrations
with harmonic frequencies of 3142 cm�1 and 1652 cm�1,
respectively. As LF modes, we consider the hydrogen bond
vibration (288 cm�1) and the second highest in-plane
backbone vibration at 520 cm�1 [Fig. 4(a)]. With the
‘‘anharmonic’’ keyword, Gaussian [33] calculates the cu-
bic and quartic expansion coefficients of the PESs, which
can be directly used in Hamiltonian (1). In contrast to the
idealized model above, the two LF modes act both as
tuning and coupling modes at the same time. The largest
and therefore most important coupling is the tuning pa-
rameter of the OH stretch with respect to the hydrogen
bond vibration with f11;2 ¼ �246 cm�1. This large tuning

factor reflects the common notion that a OH stretch vibra-
tion redshifts upon hydrogen bonding by an amount that is

a direct measure of the strength of the hydrogen bond (i.e.,
essentially of the O � � �O distance). The tuning parameter
of the other mode, f11;1 ¼ �60 cm�1, is significantly

smaller. Both modes have nonzero coupling constants,
f12;1 ¼ �75 cm�1 and f12;2 ¼ �80 cm�1.

Figure 4(b) shows the resulting adiabatic PESs of
malonaldehyde as a function of the two LF coordinates.
In contrast to the idealized model in Eq. (3), here the
complete cubic and quartic potential was used in order to
realistically describe the molecule-specific details of the
PESs. A CI is found at an energy of 2663 cm�1, which is
146 cm�1 below the vertical Franck Condon energy at
2809 cm�1, while the bottom of the j10i surface lies at
2583 cm�1. These values agree roughly with those of the
model in Fig. 1; hence, an initially excited wave packet
will propagate energetically downhill and relax through the
CI in a qualitatively similar way as in Fig. 2.
In conclusion, we have introduced the concept of vibra-

tional CIs. Similar to what was found for their well-known
vibronic counterparts, is has been shown that these
intersections lead to ultrafast vibrational relaxation dynam-
ics and complex transient infrared spectra. Employing
ab initio calculations, we have demonstrated that a low-
lying vibrational CI of the OH stretch and bend modes
may indeed exist for strong intramolecular hydrogen
bonds. Only a few LF modes are expected to couple
strongly to the HF modes; hence, vibrational energy is
selectively funneled into these modes, and could poten-
tially cause reactions such as hydrogen bond breaking
[20,34] or proton transfer [21,23]. While full-dimensional
wave packet calculations of the ultrafast vibrational relax-
ation dynamics of various strongly hydrogen-bonded sys-
tems are available [14,35,36], the concept of a vibrational
CI may add an intuitive physical understanding of these
processes. Furthermore, an understanding of vibrational
CIsmay lead tomore accurate approximate algorithms (such
as surface hopping [37]) to describe nuclear dynamics.
Future investigations will include the study of intermo-

lecular dynamics, such as that of water in its clustered,
liquid or solid form [10,17,18,36]. In direct analogy to
the discussion above, the interaction of the OH stretch
vibrations among each other and with the hydrogen bond-
ing network is expected to give rise to intermolecular
vibrational CIs [38], which may help to explain the so-far
little understood multidimensional infrared spectra of these
systems.
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