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Quantum computation that combines the coherence stabilization virtues of decoherence-free subspaces

and the fault tolerance of geometric holonomic control is of great practical importance. Some schemes of

adiabatic holonomic quantum computation in decoherence-free subspaces have been proposed in the past

few years. However, nonadiabatic holonomic quantum computation in decoherence-free subspaces, which

avoids a long run-time requirement but with all the robust advantages, remains an open problem. Here, we

demonstrate how to realize nonadiabatic holonomic quantum computation in decoherence-free subspaces.

By using only three neighboring physical qubits undergoing collective dephasing to encode one logical

qubit, we realize a universal set of quantum gates.

DOI: 10.1103/PhysRevLett.109.170501 PACS numbers: 03.67.Pp, 03.65.Vf

The discovery of geometric phase [1,2] and quantum
holonomy [3,4] accompanying evolutions of quantum
systems has unveiled important geometric structures in
the description of physical states. These structures show
that the twisting of subspaces, e.g., eigenspaces of an
adiabatically varying Hamiltonian, can be used to ma-
nipulate quantum states in a robust manner. This is the
initial idea of holonomic quantum computation (HQC),
first proposed by Zanardi and Rasetti [5]. HQC has
emerged as a key tool to implement quantum gates acting
on sets of quantum bits (qubits). As is well known, errors
in the control process of a quantum system are one main
practical difficulty in building a quantum computer, and
propagation of these errors may quickly spoil the whole
quantum computational process. Since HQC is fault tol-
erant with respect to certain types of errors in the control
process, it has been used to realize robust quantum
computation [6–17].

Besides errors produced in the control process, decoher-
ence is another main practical difficulty in building a
quantum computer. Decoherence is caused by the inevi-
table interaction between the computational system and its
environment. It collapses the desired coherence of the
system and may thereby be detrimental to the efficiency
of quantum computation. Protecting qubits from the effects
of decoherence is a vital requirement for any quantum
computer implementation. Various strategies have been
proposed to protect quantum information against decoher-
ence. Among them, decoherence-free subspaces (DFSs)
provide a promising way to avoid quantum decoherence
[18]. The basic idea of DFSs is to utilize the symmetry
structure of the interaction between the system and its
environment. Information is encoded in a subspace of the
Hilbert space of a system, over which the dynamics is
unitary. DFSs have been experimentally realized in many
physical systems [19–23].

To protect quantum information from both errors pro-
duced in the control process and decoherence caused by the
environment, quantum gates that combine the coherence
stabilization virtues of DFSs and the fault tolerance of
geometric holonomic control are of great practical impor-
tance. To this end, schemes of HQC in DFSs have been
proposed recently [10–12]. Wu et al [10] proposed the first
scheme of adiabatic HQC in DFSs, in which one logical
qubit is encoded by four neighboring physical qubits and
the quantum holonomies are accumulated by adiabatically
changing the couplings between the qubits along dark
states. The scheme is robust against collective dephasing
and some stochastic errors. Yet, the requirement of adia-
batic control of four neighboring physical qubits under-
going collective dephasing is an experimental challenge.
All other schemes that can realize a universal set of hol-
onomy quantum gates in DFSs are based on adiabatic
evolution too, and they met the same problem of long
run-time requirement.
In this Letter, we develop a scheme for nonadiabatic

universal holonomic quantum computation in decoherence-
free subspaces. Our proposal avoids the long run-time re-
quirement but shares all the robust advantages of its adiabatic
counterpart. An additional attractive feature of this nonadia-
batic setting is that only three neighboring physical qubits
undergoing collective dephasing are needed to encode one
logical qubit. We further demonstrate that three neighboring
physical qubits is the minimal number for realizing non-
adiabatic HQC in DFSs, although two neighboring physical
qubits may construct the minimal DFS.
Before proceeding further, we explain how quantum

holonomy may arise in nonadiabatic unitary evolution.
Consider a quantum system described by an N-dimensional
state space and exposed to the Hamiltonian HðtÞ. Assume
there is a time-dependent L-dimensional subspace SðtÞ
spanned by the orthonormal basis vectors fj�kðtÞigLk¼1 at
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each instant t. Here, j�kðtÞi satisfy the Schrödinger equa-

tion ij _�kðtÞi¼HðtÞj�kðtÞi. That is, j�kð0Þi!j�kðtÞi¼
Uðt;0Þj�kð0Þi with the time evolution operator Uðt; 0Þ ¼
T expð�i

R
t
0 Hðt0Þdt0Þ, T being time ordering. One may

conclude that the unitary transformation Uð�; 0Þ is a holon-
omy matrix acting on the L-dimensional subspace Sð0Þ
spanned by fj�kð0ÞigLk¼1 if j�kðtÞi satisfy the following

requirements:

ðiÞ XL
k¼1

j�kð�Þih�kð�Þj ¼
XL
k¼1

j�kð0Þih�kð0Þj; (1)

ðiiÞ h�kðtÞjHðtÞj�lðtÞi ¼ 0; k; l ¼ 1; . . . ; L: (2)

To verify that Uð�; 0Þ is a holonomy matrix acting on Sð0Þ,
we first note that condition (i) entails that the subspace
undergoes cyclic evolution; i.e., we can introduce a set of
the auxiliary bases j�kðtÞi of SðtÞ with the property

j�kð�Þi ¼ j�kð0Þi ¼ j�kð0Þi; k ¼ 1; . . . ; L: (3)

Note that j�kðtÞi need not satisfy the Schrödinger equation,
and therefore such bases can always be found [24]. By the
aid of j�kðtÞi, j�kðtÞi may be expressed as

j�kðtÞi ¼
XL
l¼1

j�lðtÞiClkðtÞ; (4)

where CklðtÞ are time dependent coefficients. Substituting
Eq. (4) into the Schrödinger equation yields

d

dt
ClkðtÞ ¼ i

XL
m¼1

ðAlmðtÞ � KlmðtÞÞCmkðtÞ; (5)

where AklðtÞ ¼ ih�kðtÞj d
dt j�lðtÞi, and KklðtÞ ¼

h�kðtÞjHðtÞj�lðtÞi. Condition (ii) is equivalent to
KklðtÞ ¼ 0; i.e., the Hamiltonian vanishes on SðtÞ and hence
CðtÞ ¼ T expðiRt

0 Aðt0Þdt0Þ. The matrix AðtÞ transforms as a

proper gauge potential under the change j�kðtÞi !P
L
l¼1 j�liVlkðtÞ, where VðtÞ is any unitary once differentia-

ble L� L matrix such that Vð�Þ ¼ Vð0Þ. At time t ¼ �,

there is Cð�Þ ¼ Pei
H

A, whereA ¼ Adt is the connection
one form and P is path ordering. From Eq. (4), we have
j�kð�Þi ¼ P

L
l¼1 j�lð�ÞiClkð�Þ ¼ P

L
l¼1 j�lð0ÞiClkð�Þ. It in-

dicates that Cð�Þ is just the transformation matrix from
initial states to final states in the subspace considered.
Hence, we finally obtain

Uð�Þ � Cð�Þ ¼ Pei
H

A: (6)

Equation (6) shows that Uð�Þ is a holonomy matrix in the
space spanned by fj�kðtÞigLk¼1.

Let us now elucidate our physical model. The computa-
tional system consists of N physical qubits interacting col-
lectively with a dephasing environment. The Hamiltonian of
the system reads

H ¼ X
k<l

ðJxklRx
kl þ JyklR

y
klÞ; (7)

where Jxkl and J
y
kl are controllable coupling constants, which

are driven to enact the quantum computation, and

Rx
kl¼

1

2
ð�x

k�
x
l þ�y

k�
y
l Þ; Ry

kl¼
1

2
ð�x

k�
y
l ��y

k�
x
l Þ: (8)

The operators Rx
kl and R

y
kl are XY and Dzialoshinski-Moriya

[25,26] interaction terms, where �x
k (�y

k) represents the

Pauli X (Y) operator acting on the kth qubit. A variety of
quantum systems, including trapped ions and quantum dots,
can be described by this Hamiltonian [27–30]. The major
source of decoherence in the quantum system is dephasing.
The effect of the dephasing environment on the N-qubit
system is described by the interaction Hamiltonian,

HI ¼
�X

k

�z
k

�
� B; (9)

where�z
k is the Pauli Z operator acting on the kth qubit, and

B is an arbitrary environment operator. The symmetry of the
interaction implies that there exists a DFS that can be used to
protect quantum information against decoherence. Our aim
is to find a realization of nonadiabatic HQC in this DFS.
We begin by showing that two physical qubits are not

sufficient to realize decoherence-free nonadiabatic HQC in
the presence of a dephasing environment. For a two-qubit
system, the corresponding DFS is spanned by fj01i; j10ig.
In order to protect the quantum gates from decoherence,
logical qubits must be encoded in this DFS, and the state of
the system must be kept within the subspace during the
whole evolution. Thus, the DFS itself must be an invariant
subspace during the system’s evolution. In addition, to
ensure that the gates are holonomic, condition (ii) must
be satisfied, i.e., hkjUðt; 0ÞyHðtÞUðt; 0Þjli ¼ 0 for k,
l ¼ 01,10. This is equivalent to hkjHðtÞjli ¼ 0 since the
DFS is an invariant subspace. Thus, HðtÞ ¼ 0 in the sub-
space and it follows that one cannot realize nonadiabatic
HQC in the DFS of two physical qubits since there is no
nontrivial Hamiltonian to meet conditions (i) and (ii)
above.
For three physical qubits interacting collectively with

the dephasing environment, there exists a three-
dimensional DFS

S D ¼ Spanfj100i; j010i; j001ig: (10)

We encode a logical qubit in the subspace

S L ¼ Spanfj010i; j001ig; (11)

and denote the computational basis elements as j0iL ¼
j010i; j1iL ¼ j001i. Clearly, SL is a subspace of SD and
the remaining vector j100i is used as ancillae, denoted as
jai ¼ j100i for convenience. In the following paragraphs,
we utilize the DFS of three physical qubits to implement
nonadiabatic HQC. To this end, we need to generate two
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noncommuting single-qubit gates and one nontrivial
two-qubit gate.

Firstly, we demonstrate how to realize the one-qubit
holonomic gate

Uxzð�1Þ ¼ XLe
i�1ZL : (12)

Here, XL ¼ j0iLh1jL þ j1iLh0jL, ZL ¼ j0iLh0jL � j1iLh1jL
are the Pauli operators of the logical qubit and �1 is an
arbitrary phase. In the computational basis fj0iL; j1iLg, the
gate reads

Uxzð�1Þ ¼ 0 e�i�1

ei�1 0

� �
: (13)

In order to realize Uxzð�1Þ, we set Jx12 ¼ J1 cos
�1

2 , Jy12 ¼
�J1 sin

�1

2 , Jx13 ¼ �J1 cos
�1

2 , Jy13 ¼ �J1 sin
�1

2 , and all

other JxðyÞkl to zero, where J1 is a time-independent parame-

ter [31]. The Hamiltonian then reads

H1 ¼ J1

�
ðRx

12 � Rx
13Þ cos

�1

2
� ðRy

12 þ Ry
13Þ sin

�1

2

�
: (14)

SD itself is an invariant subspace of the evolution operator
U1ðtÞ ¼ e�iH1t. In the basis fjai; j0iL; j1iLg, we have

H1 ¼ J1

0 eið�1=2Þ �e�ið�1=2Þ
e�ið�1=2Þ 0 0
�eið�1=2Þ 0 0

0
B@

1
CA: (15)

With the obvious expression of H1, we can work out
the operator U1ðtÞ. By choosing the evolution time �1
such that

J1�1 ¼ �ffiffiffi
2

p ; (16)

the resulting unitary operator reads

U1ð�1Þ ¼
�1 0 0
0 0 e�i�1

0 ei�1 0

0
@

1
A: (17)

Thus, the action of the evolution operator U1ð�1Þ on the
states in the logic subspace SL is equivalent to that of the
transformation Uxzð�1Þ.

In order to ensure that the action of U1ð�1Þ on SL is
purely holonomic, we need to check conditions (i) and (ii).
Condition (i) is satisfied since the subspace spanned by
fU1ð�1Þj0iL; U1ð�1Þj1iLg coincides with SL. Furthermore,
as H1 and U1ðtÞ commute with each other, condition (ii)
reduces to hkjLH1jk0iL ¼ 0, where k, k0 ¼ 0, 1. Thus,
both conditions (i) and (ii) are satisfied, and U1ð�1Þ is
therefore a one-qubit holonomic gate in the subspace SL,
SL � SD.

Secondly, we demonstrate how to realize the one-qubit
holonomic gate

Uzxð�2Þ ¼ ZLe
i�2XL ; (18)

where �2 is an arbitrary phase. In the computational basis
fj0iL; j1iLg, we have

Uzxð�2Þ ¼ cos�2 i sin�2

�i sin�2 � cos�2

� �
: (19)

To realize Uzx, we set Jy12 ¼ J2 sin
�2

2 , Jx13 ¼ �J2 cos
�2

2 ,

and all other JxðyÞkl to zero, where J2 is a time-independent

parameter [31]. The Hamiltonian then reads

H2 ¼ J2

�
Ry
12 sin

�2

2
� Rx

13 cos
�2

2

�
: (20)

Again SD is an invariant subspace of U2ðtÞ ¼ e�iH2t.
Expressed in the fjai; j0iL; j1iLg, the resulting time evolu-
tion operator takes the form

U2ð�2Þ ¼
�1 0 0
0 cos�2 i sin�2

0 �i sin�2 � cos�2

0
@

1
A (21)

by choosing the evolution time �2 such that

J2�2 ¼ �: (22)

Equation (21) shows that the action of the evolution
operator U2ð�2Þ on SL is equivalent to that of Uzxð�2Þ.
Its holonomic nature is demonstrated as above.
Thus, U2ð�2Þ acts as a one-qubit holonomic gate in the
subspace SL.
We note that any single-qubit operation can be written as

a combination of the following two types of rotations

Rzð�Þ ¼ e�ið�=2Þ�z
; Rxð’Þ ¼ e�ið’=2Þ�x

; (23)

where �, ’ are rotation angles and �z, �x are Pauli
operators. Equations (13) and (19) imply

Uxzð0ÞUxzð��=2Þ ¼ e�ið�=2ÞZL ;

Uzxð0ÞUzxð�’=2Þ ¼ e�ið’=2ÞXL;
(24)

where XL and ZL are just the Pauli Z and Pauli X operators
of the logical qubit. This proves that Uxzð�1Þ and Uzxð�2Þ
can realize any single-qubit rotation.
Thirdly, we demonstrate how to realize a nontrivial

two-qubit gate. It is worth noting that the Hamiltonian in
Eq. (7) serves single-qubit gates but cannot directly be
applied to implement two-qubit gates. To implement a
holonomic two-qubit gate, four-qubit interactions are
needed. Here, we generate the CNOT gate by means of the
Hamiltonian,

H3 ¼ J3ðRx
13R

x
45 � Rx

13R
x
46Þ; (25)

where J3 is a time-independent parameter [31]. The
Hamiltonian H3 is obtained by setting Jxx13;45 ¼ �Jxx13;46 ¼
J3 and all other controllable four-qubit coupling constants
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to zero. The choice of J3 is related to the evolution time �3.
The requirement for J3 or �3 is

J3�3 ¼ �ffiffiffi
2

p : (26)

In this case, SD � SD is a decoherence-free subspace, in
which the small subspace spanned by fjai � jai; j0iL �
j0iL; j0iL � j1iL; j1iL � j0iL; j1iL � j1iLg is an invariant
subspace of the Hamiltonian H3. In the invariant subspace,
the evolution operator at time t ¼ �3 reads

U3ð�3Þ ¼

�1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

0
BBBBB@

1
CCCCCA: (27)

Then, the CNOT gate is realized in the subspace SL � SL,
i.e., spanfj0iL � j0iL; j0iL � j1iL; j1iL � j0iL; j1iL � j1iLg.
One may verify that conditions (i) and (ii) are fulfilled too.
U3ð�3Þ plays a two-qubit holonomic CNOT gate in the
subspace SL � SL.

We have succeeded in constructing two noncommuting
holonomic single-qubit gatesUxz andUzx and a holonomic
CNOT two-qubit gate in DFSs of a system undergoing
collective dephasing. The three gates compose a universal
set of nonadiabatic holonomic quantum gates in DFSs.
It is worth noting that the scheme proposed here is
suitable for scaling up the logic qubits. The Hamiltonian
to realize the gates of the nth logic qubit has the same

structure as H1 or H2 but with the exchanging RxðyÞ
12 !

RxðyÞ
3n�2;3n�1 and RxðyÞ

13 ! RxðyÞ
3n�2;3n, while the Hamiltonian to

realize the CNOT gate between the mth and the nth logic
qubits has the same structure as H3 but with the
exchanging Rx

13R
x
45 ! Rx

3m�2;3mR
x
3n�2;3n�1 and Rx

13R
x
46 !

Rx
3m�2;3mR

x
3n�2;3n.

In summary, we have put forward a scheme for
nonadiabatic holonomic quantum computation in
decoherence-free subspaces. By using only three neighbor-
ing physical qubits undergoing collective dephasing to
encode one logical qubit, we realize a universal set of
quantum gates. Our scheme combines the coherence
stabilization virtues of decoherence-free subspaces and
the fault tolerance of geometric holonomic control.
Comparing with the previous schemes, our scheme
has removed the long run-time requirement in the
adiabatic evolution and can avoid the extra errors and
decoherence involved due to long time evolution. Since
the Hamiltonian in the scheme may be independent of
time, our scheme seems promising in experimental imple-
mentation, which may shed light on the applications of
holonomic quantum computation in decoherence-free
subspaces.
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