Comment on "Ferroelectric Order of Parallel Bistable Hydrogen Bonds"

Second harmonic generation (SHG) is a very sensitive probe to detect phase transitions between noncentrosymmetric (NCS) and centrosymmetric (CS) structures, since it exists only in NCS materials, unless a magnetic dipole or an electric quadrupole contributes to it [1]. Therefore, temperature dependence of second-order nonlinear optical susceptibility $\chi^{(2)}$ can be an indicator of CS-to-NCS phase transition and useful for screening inorganic-organic hybrid ferroelectrics [2–4].

Szafrański et al. discovered a series of ferroelectrics such as [(H-dabco)X] [$X = ClO_4$ (CO4), BF₄ (BF4), ReO₄ (RO4), and H-dabco = 1-azonia-4-azabicyclo-(2.2.2)octane] [5,6]. Both CO4 and BF4 crystallize in NCS at room temperature and in CS above T_c [5]. Similarly, they pointed out that RO4 crystallizes in NCS space group Cm in the ferroelectric phase (FP) at room temperature and in CS space group P4/mmm in the paraelectric phase (PP) above T_c (374 K) [6]. Actually, we consider that this assignment on space group in PP is not consistent with our experimental result of $\chi^{(2)}$ [Fig. 1(d)], since the $\chi^{(2)}$ above T_c is still nonzero. The electric configuration of Re^{7+} is $4f^{14}5d^06s^0$, whose 4f orbit is full and 5d and 6sorbits are empty, which is a nonmagnetic cation. Therefore, the nonzero $\chi^{(2)}$ in RO4 can overwhelming determine noncentrosymmetry structure, since there is no magnetic dipole contributing to the SHG effect [1]. For comparison, we have measured $\chi^{(2)}$ on CO4 and BF4. As expected, above T_c their $\chi^{(2)}$ value unambiguously becomes zero [Fig. 1(b)], abiding by the symmetry breaking rule from FP to PP.

It must be NCS if a crystal is electric-dipole SHG active. We can easily understand what happens about the temperature dependence of $\chi^{(2)}$ of RO4 [Fig. 1(d)]: (a) Below 200.7 K (T_1) , its structure is NCS with point group mm2, since $\chi^{(2)}$ has a nonzero value. (b) Above T_1 , $\chi^{(2)}$ gradually increases with increasing temperature and reaches a saturated value, corresponding to a ferroelectric phase with space group Cm. The calculated spontaneous polarization [2] from crystal structure is 12.96 μ C \cdot cm⁻², which is consistent with Ref. [6]. (c) When the temperature is higher than 377.1 K (T₂), $\chi^{(2)}$ sharply decreases in a temperature range of 10 K and then gradually decreases to zero around 499.6 K (T_3) , indicating that RO4 is still NCS. Single crystal x-ray diffraction also confirmed that the space group is P4mm (Fig. 2) and not P4/mmm. The calculated spontaneous polarization is 9.455 μ C \cdot cm⁻² and not zero as mentioned in Ref. [6]. (d) Above T_3 , $\chi^{(2)}$ becomes zero and the crystal begins to decompose as shown in the thermogravimetric analysis (TGA) curve [Fig. 1(d)]. Above 650 K, the decomposition is complete with a weight loss of 30.8%, indicating that only perrhenic acid remains. These phase transitions revealed by

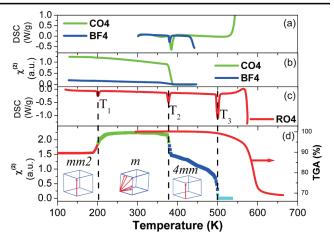


FIG. 1 (color online). Temperature dependence of DSC of CO4 and BF4 (a), $\chi^{(2)}$ of CO4 and BF4 (b), DSC of RO4 (c), and $\chi^{(2)}$ and TGA of RO4 (d). Crystal structural transition is also given in (d), and the thin red arrows indicate the directions of the polarization.

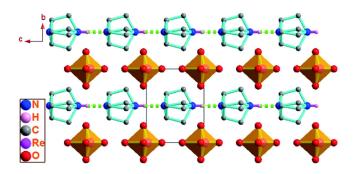


FIG. 2 (color online). Crystal structure of RO4 in the phase with space group *P4mm* at 383 K.

SHG effect are consistent with differential scanning calorimeter (DSC) results [Figs. 1(a) and 1(c)].

In summary, RO4 undergoes two reversible FP-to-FP transitions at T_2 and T_1 , respectively, like BaTiO₃. It is notable that the correct phase transition near T_2 is a FP-to-FP transition with an Aizu notation of 4mmFm, not a PP-to-FP transition.

This work is supported by the National Natural Science Foundation of China (21101026, 21101025, 20931002, 90922005, and 21111140013).

Hong-Ling Cai, Da-Wei Fu, Yi Zhang,

Wen Zhang, and Ren-Gen Xiong Ordered Matter Science Research Center Southeast University Nanjing, 211189 People's Republic of China

Received 17 May 2012; published 15 October 2012 DOI: 10.1103/PhysRevLett.109.169601 PACS numbers: 61.50.Ks, 65.40.-b, 65.90.+i

0031-9007/12/109(16)/169601(2)

- G. J. Ashwell, G. Jefferies, D. G. Hamilton, D. E. Lynch, M. P. S. Roberts, G. S. Bahra, and C. R. Brown, Nature (London) 375, 385 (1995).
- [2] H.-L. Cai, W. Zhang, J.-Z Ge, Y. Zhang, K. Awaga, T. Nakamura, and R.-G. Xiong, Phys. Rev. Lett. 107, 147601 (2011).
- [3] W. Zhang and R.-G Xiong, Chem. Rev. 112, 1163 (2012).
- [4] T. Hang, W. Zhang, H.-Y. Ye, and R.-G. Xiong, Chem. Soc. Rev. 40, 3577 (2011).
- [5] A. Katrusiak and M. Szafrański, Phys. Rev. Lett. 82, 576 (1999).
- [6] M. Szafrański, A. Katrusiak, and G.J. McIntyre, Phys. Rev. Lett. 89, 215507 (2002).