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We qualitatively extend a microscopic dynamical theory for the transverse confinement of infinitely thin

rigid rods to study topologically entangled melts of flexible polymer chains. Our main result treats coils as

ideal random walks of self-consistently determined primitive-path (PP) steps and exactly includes chain

uncrossability at the binary collision level. A strongly anharmonic confinement potential (‘‘tube’’) for a

primitive path is derived and favorably compared with simulation results. The relationship of the PP-level

theory to two simpler models, the melt as a disconnected fluid of primitive-path steps and a ‘‘supercoarse

graining’’ that replaces the entire chain by a needle corresponding to its end-to-end vector, is examined.

Remarkable connections between the different levels of coarse graining are established.
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Understanding the fascinating and complex dynamics of
concentrated liquids of large flexible polymer coils has
been an ongoing challenge spanning many decades. From
the point of view of simulations, the vast range of length
and time scales associated with dense melts or solutions of
long chains poses a formidable challenge to studying the
long-time dynamics [1]. The theoretical difficulty is that
the topological constraints arising from chain connectivity
and uncrossability (‘‘entanglements’’) dominate intermedi-
ate and long-time elasticity, relaxation, and transport when
polymers become sufficiently long and/or concentrated.
These singular interactions, combined with the statistical
nature of polymer conformations, render a first-principles
theory exceptionally challenging to formulate.

Since its introduction, the phenomenological reptation-
tube model of de Gennes, Doi, and Edwards [2,3] has been
the most common starting point for theoretical analysis.
This single-chain approach postulates transverse localiza-
tion beyond a mesoscopic length scale, the tube diameter
dT , as the dynamical consequence of the many interpene-
trating chains on tagged polymer motion. The tube con-
straints are modeled by an infinitely strong (e.g., harmonic)
confinement field, implying that long-time diffusion pro-
ceeds only via anisotropic curvilinear motion. The
reptation-tube theory and its diverse elaborations [4] are
able to account for a remarkably broad class of experi-
mental data, but it has recently been emphasized that the
theory’s phenomenological nature can be a weakness,
especially when evaluating proposed modifications to the
model [5]. Particularly desirable is a theoretical explana-
tion of the emergence of the localizing tube, the full
spatially resolved dynamic confinement potential, and the
critical chain length that controls the crossover from
unentangled to entangled behavior, Ne [5,6].

In this Letter we adopt the classic Doi-Edwards picture
of a polymer melt by coarse graining out the chain degrees
of freedom on length scales smaller than some entangle-
ment length Le [3], but where we microscopically and
self-consistently determine this length scale. A chain of
N segments is mapped to an ideal random walk of Z �
N=Ne ‘‘primitive-path’’ (PP) steps of length Le ¼ �

ffiffiffiffiffiffi
Ne

p
,

where � is the statistical segment length such that Ree ¼ffiffiffiffiffiffiffiffiffiffiffihR2
eei

p ¼ �
ffiffiffiffi
N

p
is the mean polymer end-to-end distance.

This physical picture has been extensively used in simu-
lation studies of the confining tube, where each chain is
represented by rodlike PP segments, and topological en-
tanglements correspond to the intersection of these rodlike
segments [7,8]. By qualitatively generalizing our theory for
the dynamics of entangled rigid needles [9] to treat the
topological interchain PP interactions, we construct a mi-
croscopic theory for the full tube-confinement potential
acting at the PP level. We also address long-time center
of mass (c.m.) diffusion and end-to-end vector relaxation.
Intriguingly, we find that the results from studying chains
at the level of interacting PP steps are very similar to a
‘‘supercoarse-graining’’ (SCG) procedure [1] that replaces
the entire coil with an uncrossable needle of length Ree.
We first consider the transverse confinement of the PP

segment� on a tagged polymer in amelt with chain number
density �, schematically depicted in Fig. 1. Transverse
localization of segment � is initially treated as a Gaussian
distribution, with a mean characteristic length (‘‘tube ra-
dius’’) �rl, by self-consistently computing the long-time
(localizing) part of the force-force time correlation function
associated with a tagged segment interacting with the PP
steps of another chain. Generalizing the dynamic mean-
field theory of Szamel for nonrotating needles [10,11], the
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formal expression for this localization length under
quenched-reptation conditions (i.e., holding chain ends
fixed) is

4

�r2l
¼ ��

16�2
ð I$ � ~u� ~u�Þ :

XZ
j;k¼1

Z
d ~vd�d~r�2

� T
$ð�jÞð�y

locÞ�1T
$ð�kÞ: (1)

Here ~ui is the orientation of the PP step i, ~v and � describe
the body-frame orientation of an instantaneous conforma-
tion of a second chain, ~r�2 is the c.m. separation between �
and the second chain, and the colon denotes a double
contraction of tensorial indices. The collision operator

T
$ð�jÞ encodes effective forces at the level of impulsive
interactions; it enforces the uncrossability constraint be-
tween � and the PP segment j on the second chain. For an

explicit form of T
$
[12], we treat the interacting PP steps as

colliding needles. The ‘‘localized’’ two-chain evolution
operator governing transverse PP motion is

�y
loc ¼ �1þ �r2l

4

XZ
n;m¼1

½r þ T
$ðnmÞ�

� ð2 I$ � ~un ~un � ~um ~umÞr: (2)

Equation (1) involves Z2 time-dependent correlations be-
tween � and the PP steps on the interpenetrating chain. We
invoke two key approximations to make further progress:
(i) the off-diagonal (i.e., j � k) elements in Eq. (1) vanish,
and (ii) when evaluating the integral over diagonal elements,

the terms in �y
loc with n � �, m � j can be neglected.

These approximations are consistent with our theory for
infinitely thin, nonrotating 3D crosses [13], which was favor-
ably compared with simulation [14,15]. Physically, under
quenched-reptation conditions we interpret (i) as neglecting

simultaneous ternary and higher-order PP interactions and
assuming that on average there are no angular correlations
between steps at the PP level. Approximation (ii) is consis-
tent with the idea that under quenched-reptation conditions
the chain does not displace enough to change the pair of
interacting PP steps over the time scales describing tube
localization.
After the above approximations, Eq. (1) involves a sum

over Z identical terms. For a given PP step length Le, each
of these terms can be analytically evaluated [9,11,13]
(for details see the Supplemental Material [16]). The text-
book picture of PP coarse graining assumes that Le

(the entanglement length scale) is self-consistently set by
the diameter of the confining tube, i.e., Le ¼ �

ffiffiffiffiffiffi
Ne

p ¼ A �rl
with A ¼ 2. Written in terms of the invariant packing
length, p ¼ ðN��2Þ�1 � ð�s�

2Þ�1, which quantifies how
polymers fill space [17], the evaluation of Eq. (1) with
A ¼ 2 yields

�r l ¼ 4
ffiffiffi
2

p
A�FðAÞp ! Le ¼ 2�rl ¼ 10:2p; (3)

where FðxÞ is described in the Supplemental Material [16].
The level of quantitative agreement between Eq. (3) and the
experimental determination of dT � 2�rl � 17:7p in hun-
dreds of flexible chain polymer melts [17] seems remark-
able given the simplifying approximations employed.
Equation (3) can be viewed as a first-principles derivation
of the Lin-Noolandi conjecture for polymer melts, which
asserts that a fixed, universal number n of PP segments can
fit inside a volume d3T [18,19]. Our estimate of n ¼ dT=p is
roughly a factor of 2 smaller than experiment, consistent
with the expectation that quenching the rotational PP degree
of freedom overestimates the confining constraints.
Just as in the needle theory, the nonlinear-Langevin-

equation (NLE) approach allows one to go beyond the
Gaussian analysis and construct the full anharmonic
tube-confinement potential [9]. The NLE stochastic equa-
tion of motion for the transverse c.m. displacement (r?)
of a PP step is ��s

dr?
dt � @

@r?
Fdynðr?Þ þ �fs ¼ 0. Here, �s

is the short-time (bare) friction constant, �fs is the corre-
sponding white-noise random force, and Fdynðr?Þ is a

dynamic confinement potential (in units of kBT ¼ 1) that
follows from integrating the displacement-dependent
transverse force,

fðr?Þ ¼ �2

r?
þ 2

r?FðAÞF
�
Le

r?

�
: (4)

For rigid needles the NLE extension has been quantita-
tively compared with experiments on heavily entangled
F-actin solutions in the Gaussian and exponential-tail
displacement regimes of the confinement potential [20].
For chains we predict that Fdyn depends only on the ratio

A ¼ Le=�rl; Fig. 1 shows confinement potentials for three
values of A.

FIG. 1 (color online). Transverse confinement potential for the
PP mapping as a function of normalized transverse displacement
(solid curves, A�1 ¼ 0:5; 0:22; 0:18, left to right) and for the
SCG needle limit with N=Ne¼10;20;100;200 (dashed curves,
bottom to top). Illustrations schematically depict the two
mappings.
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Normalizing Pðr?Þ � exp½�Fdynðr?Þ� yields the proba-
bility distribution of transverse displacements on time
scales when the polymer has equilibrated inside the tube
but not yet relaxed via reptative motions. Figure 2 presents
a comparison between our predicted Pðr?Þ and the distri-
bution of individual segments from their PP step in an
atomistic simulation [21]. The simulations report displace-
ments of individual segments or beads relative to the PP
step containing the bead, whereas our theory predicts dis-
placements of the PP itself. To perform the comparison we
assume the bead displacement distribution can be modeled
by taking �rl=Le to be the ratio of average bead displace-
ment to primitive-path length; Table 1 of Ref. [21] implies
�rl=Le � 0:18; 0:22 for polyethylene and polybutadiene,
respectively. The result A � 2 arises because at the topo-
logical PP scale the chain has random walk statistics, but at
the network-mesh scale of the beads there are still orienta-
tional correlations between consecutive entanglements
[21]. This is consistent with recent studies that suggest
a factor of �2 difference between ‘‘topological’’ and
‘‘rheological’’ entanglement lengths (the latter determines
the plateau modulus) [22]. Accounting for this value of A
leads to an accurate transverse confinement potential while
only modestly changing the predicted tube diameter,
dTðA�1 ¼ 0:2Þ ¼ 8:24p.

As seen in Fig. 1, the theory is only very weakly sensitive
to the difference between A�1 ¼ 0:18; 0:22, but A�1 � 0:5
and A�1 � 0:2 are quite different. For clarity, in Fig. 2 only
results for A�1 ¼ 0:2; 0:5 are shown. The agreement be-
tween theory and simulation using this value, while imper-
fect, is striking: the shape of the distribution is quite accurate
over all length scales, and the exponential tail is very well
reproduced. Additionally, the simulations find that when
displacement is normalized by hr?i the distribution is uni-
versal, and the theoretical anharmonic confinement potential

is similarly universal, up to the very weak dependence on A
noted above.
Within the classic tube-model framework the terminal

relaxation time is understood by arguing that a PP segment
must take ðL=dTÞ2 / N=Ne diffusive ‘‘steps’’ to exit the tube
and allow the mapped chain to fully randomize its orienta-
tion, leading to�rot / N�Rouse=Ne / N3=Ne (where the stan-
dard Rouse time has been employed [3]). By invoking a
Fickian perspective the c.m. diffusion constant would be
D / L2=�rot / Ne=N

2. However, it is possible to extend
our approach to predict these scaling relations. First, neglect-
ing off-diagonal terms as above, the formal result for the
isotropic long-time inverse c.m. diffusion constant (related
to the total friction constant that follows from integrating
the force-force time correlation function of the chain) is

D�1
c:m: ¼ D�1

0 � �

24�2
I
$
:
Z

d ~vd�d~r12

� XZ
i;j;k;l¼1

T
$ðijÞð�y

e Þ�1T
$ðklÞ: (5)

The PP coarse graining renormalizes the local friction con-
stant, so the bare diffusion constant maps to Rouse diffusion
of a single PP step of Ne beads, D0 ! DR ¼ Dmon=Ne,
where Dmon is the segmental diffusion constant. Equation
(5) describes the effective diffusion of an instantaneous con-
formation of PP steps interacting with other instantaneous
conformations of PP steps, subject to the constraint that the
conformations neither change nor rotate. Explicitly solving
Eq. (5) results in Dc:m:=Dmon � N�1

e � 0:54N=N2
e . Hence,

we predict isotropic motion vanishes when N � 2Ne.
The geometric complexities of the many connected

primitive paths preclude rigorously including anisotropic,
reptativelike diffusion. For needles one can decompose the
motion into fast longitudinal motion and constrained trans-
verse motion, but for chains longitudinal motions along
different PP steps add incoherently in the laboratory frame.
However, one can invoke the physically motivated idea that
reptative diffusion is controlled by the coherent motion of
PP steps due to chain connectivity and compute the renor-
malized friction constant (from the inverse effective diffu-
sion constant) as an equally weighted sum of the slowly
relaxing terms in Eq. (5). That is, the equivalent of the fast
‘‘longitudinal’’ mode is each PP step moving along its own
axis; each term in the sum is thus contracted with the

corresponding tensor ð I$ � ~ui ~uiÞ instead of rigorously con-
tracting the entire effective diffusion tensor with a single
lab-frame tensor as in Eq. (5). Finally, we use Szamel’s
theory for transverse needle motion [11] as a sensible
surrogate for the rotational relaxation of each diagonal
term in Eq. (5). The self-consistent equation for the diffu-
sion constant can then be evaluated as

Dc:m:

D0

�
2
41þ 9:99

N

Ne

ffiffiffiffiffiffiffiffiffiffiffi
D0

Dc:m:

s
H

�
Dc:m:

D0

�35�1

; (6)

FIG. 2 (color online). Transverse-displacement probability
distribution compared with simulation [21] (points). Solid curves
are theoretical predictions with A�1 ¼ 0:5; 0:2 (left and right);
dashed curves are the chain-to-needle mapping results for
N=Ne ¼ 6; 18 000 (left and right). Inset: Log plot of PP distri-
bution with A�1 ¼ 0:5; 0:2 compared with simulation.
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where the function H is defined in Ref. [11]. For N � Ne

this simplifies considerably: we find Dc:m:=DR � 0:567�
Ne=N, almost exactly the phenomenological result of
Dc:m:=DR � Ne=3N [3].

One might expect that a PP step on a tagged polymer
likely only interacts with one PP step on another given
entangled chain. Thus, to check our interpretation of the
physical meaning of the off-diagonal terms discarded
above, we consider mapping the chains to a fluid of dis-
connected primitive-path segments. This calculation is
straightforward: the needle theory [9,11] is applied to
Eq. (1) without the double summation where the PP density
replaces the chain density, �PP ¼ Z�, and the T operators
govern the collisions of rods of length Le. The result is a dT
and effective confinement forces for a given primitive-path
step identical to the Eqs. (3) and (4). This concurs with the
physical intuition that PP-level localization is ‘‘aware’’ of
intrachain connectivity only as a second-order effect on the
time scale of interest. In contrast, disconnected PP trans-
verse diffusion proceeds as D?=D?;0 � 18�p2=L2

e for

N � Ne, a factor of Z�2 different from the chain c.m.
diffusion constant obtained above. This incorrect result
is expected, since by disconnecting the chain diffusive
motion must be massively (and artificially) enhanced.

We now demonstrate that, surprisingly, the results from
treating chains as connected primitive-path steps are quite
similar to a truly minimalist mapping: replacing entire
chains by single uncrossable needles. Replacing an entire
chain with 1 degree of freedom is in the spirit of recent
SCG methods that substitute a single fictitious particle for
entire polymer chains [1]. Soft ellipsoidal particles are able
to accurately predict long-time unentangled Rouse dynam-
ics for short chains [23], but modeling interparticle inter-
actions to recover both equilibrium structure and dynamics
of long chains is very difficult [1,24]. Here we investigate
whether such a radical reduction in degrees of freedom is
able to predict from first-principles theory various entan-
glement phenomena. This approach is known to be sensible
for studying the crossover from unentangled to entangled
behavior from PP-simulation analyses of the topology-
preserving network that defines the melt. Crucially, melts
of chains with N <Ne are not entangled and a PP analysis
returns a liquid of rigid rods with mean length equal to the
average polymer end-to-end distance [25,26]. In light of
this, onewould expect a SCG to correctly capture aspects of
the entanglement crossover.

Our specific SCG is to identify the needle length with the
average long axis of an instantaneous chain conformation,
schematically depicted in the upper illustration of Fig. 1.
Instantaneous polymer conformations are anisotropic; quan-
tifying this anisotropy using simulation data from Ref. [27],

a flexible chain is replaced by a needle of length L �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N=1:3

p
. The dimensionless coupling constant of the nee-

dle theory becomes �L3 � �
ffiffiffiffi
N

p
=ð1:481pÞ. The number of

segments in an entanglement strand follows from our prior

prediction for the crossover density�eL
3 � 10:1, defined as

the intersection between the independent-binary-collision
regime and the asymptotic reptative scaling regime [9].
This value of the crossover density corresponds to having
�10 entangled chains within an end-to-end distance of a
given chain, and impliesNe � 244ðp=�Þ2 ¼ 244�sp

3, very
close to the experimental finding ofNe � 313�sp

3 [17]. The
PP step length can be independently predicted by using the
transverse localization length of the rod c.m. [9,11] as a
surrogate for the localization of a PP step. The result for

N � Ne isLe ¼ 2rl ¼ 16
ffiffiffi
2

p
=ð��L2Þ � 9:36p, very simi-

lar to the PP analysis presented above. Remarkably, as
shown in Fig. 2, this SCG also results in an accurate tube-
confinement potential, although here the normalized poten-
tial is weakly N=Ne dependent, in apparent contrast with
simulation [21]. The similarities between the two coarse-
graining schemes hint at a deep connection between the
entanglement physics of flexible coils and rigid rods: a
universal functional form describes the transverse confine-
ment potential in both systems. This is reminiscent of the
finding that PP analyses can provide a way to renormalize
‘‘loosely’’ to ‘‘tightly’’ entangled systems by examining the
entanglement plateau modulus [28].
In summary, we have constructed a first-principles mi-

croscopic theory for the dynamics of entangled random
coil polymers at the primitive-path level, self-consistently
renormalizing interchain PP interactions to construct the
full anharmonic tube-confinement potential. This responds
to a major theoretical challenge in understanding highly
entangled polymer chain dynamics [5,6]. The close agree-
ment between the theoretical confining potential and simu-
lation at the PP level suggests a potential application of our
work in improving slip-link-model simulations by replac-
ing the harmonic springs typically employed to mimic
entanglement constraints [29]. Another potential applica-
tion is a truly microscopic analysis of the entanglement
plateau modulus, a long-standing and theoretically difficult
issue associated with the relative importance of bonded
and nonbonded stresses (or intra- and interchain forces)
[3,30–32]. The usual Doi-Edwards assumption is that in-
trachain terms dominate, but simulations find that the
magnitude of the interchain terms is more compatible
with the total contribution to the stress [32]. How these
different stress-storage contributions change under defor-
mation could be quite different, and our theory is in a
unique position to microscopically evaluate this issue.
Finally, a potential advantage of our microscopic theory

is that it provides a tractable conceptual and computational
framework to implement specific modifications to the basic
reptation-tube model. For instance, the effect of contour
length fluctuations can be modeled by keeping the mean Le

fixed at the equilibrium length but stochastically sampling
PP step lengths (or SCG mapped needle lengths) from a
Gaussian distribution. Our prediction of anharmonic trans-
verse confinement may have major implications for how
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the tube model is modified under nonlinear rheological de-
formations, where the question of how large deformations
soften, or even destroy, the confining tube is a frontier issue
[33–37].We recently studied sucheffects for large-amplitude
step strains of entangled needle fluids [38], and plan to soon
extend the calculation to entangled chains.
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