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Numerically optimized reduced descriptions of macromolecular liquids often present thermodynamic

inconsistency with atomistic level descriptions even if the total correlation function, i.e. the structure,

appears to be in agreement. An analytical expression for the effective potential between a pair of coarse-

grained units is derived starting from the first-principles Ornstein-Zernike equation, for a polymer liquid

where each chain is represented as a collection of interpenetrating blobs, with a variable number of blobs,

nb, of size Nb. The potential is characterized by a long tail, slowly decaying with characteristic scaling

exponent of N1=4
b . This general result applies to any coarse-grained model of polymer melts with units

larger than the persistence length, highlighting the importance of the long, repulsive, potential tail for the

model to correctly predict both structural and thermodynamic properties of the macromolecular liquid.

DOI: 10.1103/PhysRevLett.109.168301 PACS numbers: 83.80.Sg, 83.10.Mj, 83.10.Rs

Relevant structural and dynamical properties of poly-
mer liquids take place over a large range of length (and
time) scales. The computational requirements often ren-
der it impractical or impossible to fully investigate such
systems with atomistic level simulations. To overcome
these limitations, many descriptions of polymeric liquids
with reduced internal degrees of freedom, or coarse-
grained (CG) descriptions, have been proposed. The tre-
mendous interest that CG methods have generated is due
to their capability of speeding up simulations, probing
systems on larger length scales than conventional atom-
istic simulations [1–8].

The basis for any coarse grained description is the speci-
fication of effective interaction potential energies or forces
between coarse grained units. Despite the growing interest
in CG methods and their proven successes, most CG mod-
els are still limited in their potential application because of
the empirical character of the effective interaction poten-
tials upon which they rely. While a few CG approaches
have been formally derived [9–12], most, for example the
iterative Boltzmann inversion procedure where the meso-
scale potential is optimized to reproduce the total correla-
tion functions, and sometimes secondarily the pressure [4],
rely on numerical optimization of their CG parameters
through comparison with the related atomistic simulations
or with experimental data. Unfortunately, numerically opti-
mized CG potentials are in principle neither transferable to
different systems, nor to the same system in different
thermodynamic conditions, and they can not ensure con-
sistency for properties different from the ones against
which their parameters have been optimized [13]. This
limits, dramatically, their generality and convenience.

In this Letter, we present an analytical formalism for the
potential describing the interaction between CG units for a
model of a polymer liquid where each molecule is repre-
sented as a chain of interpenetrating spheres with variable
size and number, in variable thermodynamic conditions:
we show that the CG model presented and the related

analytical potential ensure structural and thermodynamic
consistency with the atomistic description. The model is
general, as the potential is fully transferable and it is
applicable to liquids of polymers with different molecular
structure. The analytical form of the potential allows for
the characterization of some general features of how ther-
modynamic properties and structure depend on the shape
of the intermolecular potential between CG units.
In a polymeric liquid of monomer density, �m, and

number of polymers n, the size of the polymeric chain is
defined by its radius-of-gyration, R2

g ¼ Nl2=6, with l the

effective segment length between the center-of-mass (c.m.)
of two monomers, and N the number of monomers in a
chain. Here we are concerned about liquids of polyethylene
(PE), for which l ¼ 0:437 nm. Each polymer is repre-
sented as a chain of superimposing soft blobs, with Nb

the number of monomers in one blob, nb ¼ N=Nb the
number of blobs in one chain, and blob size characterized
by Rgb ¼ Rg=

ffiffiffiffiffi
nb

p
. The correlation functions that describe

the static structure of the blob CGmodel have been derived
from the formal solution of a generalized Ornstein-Zernike
(OZ) equation where monomeric sites are assumed to be
real sites, and CG sites are assumed to be fictitious sites, in
an extension of Krakoviack’s et al. [14,15] original ap-
proach, and including the thread model polymer reference
interaction site model (PRISM) monomeric description
[16,17]. By assuming a Gaussian distribution of the mono-
mers inside a blob and monomer interactions much shorter
ranged than the size of the blob, which are reasonable
approximations for subchains with Nb larger than the
persistence length (for PE Nb � 30), an analytical blob-

blob total correlation function, ĥbbðrÞ, was derived, and
shown to be in quantitative agreement with the total corre-
lation function from atomistic simulations [17].

Starting from ĥbbðrÞ and given that the monomer direct
correlation function, cmmðrÞ, has a range shorter than the
size of the CG unit, an analytical solution of the CG
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potential is derived by approximating the Fourier transform
of cmmðrÞ by its zero wave vector value, c0 ¼
4�

R1
0 r2cmmðrÞ. The effective direct correlation between

blobs is given in Fourier space by

ĉbbðkÞ¼�Nb�b

�m

½�̂bm
av ðkÞ=�̂bb

avðkÞ�2
1þnb�bf�̂mmðkÞ�½�̂bm

av ðkÞ�2=�̂bb
avðkÞg

;

(1)

where �b ¼ �Nb�mc0, c0<0, and �̂mm
av ðkÞ, �̂bm

av ðkÞ, and
�̂bb

avðkÞ are the chain-averaged intramolecular correlation
functions between pairs of monomers, the c.m. of a blob
and a monomer, and pairs of blob c.m.’s respectively,
normalized so their value at k¼0 is one. For wave vectors
near k ¼ 0, the intramolecular correlations are approxi-

mately �̂mmðkÞ�1�nbk
2=3þn2bk

4=12, �̂bmðkÞ � 1þ
ð1=6 � nb=3Þk2 þ ð3 � 5nb � 10n2b þ 15n3bÞk4=180nb,
and �̂bbðkÞ�1þð1=3�nb=3Þk2þð2�nb�4n2bþ3n3bÞk4=
36nb. The sharp peak around k ¼ 0 leads to the enhanced
sensitivity of the function to the quality of the approxima-
tions used in the chain model, and made numerical solu-
tions of the potential necessary in our previous work. The
total correlation function in this blob description gives
isothermal compressibility, �T ¼ ½kBT�mð1þ �bÞ=N��1,
with kB the Boltzmann constant and T the temperature,
which is consistent with the compressibility in the atomistic
description [16]. Intra- and intermolecular pair distribution

functions and the structure factor are consistent with their
atomistic counterpart for distances r > Rgb and wave vec-

tors k < 2�=Rgb.

Assuming that a coarse grained unit contains a number of

monomers sufficiently large to follow a Gaussian space

distribution, and that the density and the interaction strength

are large enough that the product �b > >1, the contribution
to the inverse transform integral for large wave vectors

(k >>1=Rgb) is negligible for r > Rgb. In this limit, the

direct correlation for k <<1=Rgb has the simple ra-

tional function limiting form cbbðkÞ / 1=ð1þ �bR
4
gbk

4Þ as
�b!1. Approximating the effective direct correlation by

this form for all wave vectors introduces very little error,

allowing for a simple approximation for the functional form

in real space. The accuracy at intermediate �b values can be

improved by taking this as the zeroth order term of an

asymptotic expansion in 1=
ffiffiffiffiffiffi
�b

p
about �b ! 1.

The effective potential is then derived by applying
the approximation VbbðrÞ � �kBTfcbbðrÞ � hbbðrÞ þ
ln½1þ hbbðrÞ�g � �kBTc

bbðrÞ, the limiting form of the
hypernetted chain approximation valid when jhbbðrÞj<<1
everywhere. This approximation holds for soft potentials in
the limit of high densities and long chains of interest here
[18]. For r > Rgb, the intermolecular blob potential, which

is the needed input for the mesoscale simulations of the CG
polymer liquid, is given by

VbbðrÞ � kBT

8<
:
�

45
ffiffiffi
2

p
Nb�

1=4
b

8�
ffiffiffi
3

p ffiffiffi
54

p
�mR

3
gb

�
sinðQrÞ
Qr

e�Qr �
� ffiffiffi

5
p

Nb

672��m�
1=4
b R3

gb

�

�
�
ð13Q3

rsðQr� 4ÞÞ cosðQrÞ þ
�
945þ 13Q4

rs

�1=4
b

�
r sinðQrÞ þ 945r

�1=4
b

cosðQrÞ
�
e�Qr

Qr

9=
;; (2)

whereQ ¼ 51=4
ffiffiffiffiffiffiffiffi
3=2

p
=ð�bÞ1=4,Qrs ¼ 51=4

ffiffiffiffiffiffiffiffi
3=2

p
, and r is in

units of the blob radius-of-gyration, Rgb. When nb ¼ 1,
Eq. (2) represents the effective potential between the c.m.
of two polymers in a melt.

Because the potential is formally expressed as a function
of the molecular and thermodynamic parameters, Eq. (2) is
in principle general and applicable to polymer melts in
different thermodynamic conditions and with diverse mac-
romolecular structures.

The range of the effective potentials between CG units
scales beyond the effective blob radius of gyration, Rgb, and

decays with the number of monomers per blob as N1=4
b . The

observed scaling behavior can be explained by considering
that in a liquid the total effective correlation between two
sites (atomistic or CG), and its related potential, can be
regarded as ‘‘propagating’’ through sequences of direct
pair interactions following the OZ integral equation theory.
These many-body contributions to the pair interaction are
not simply additive, and once mapped into the OZ pair

interaction, they result in a slowly decaying tail. Because
of the Gaussian statistics that applies to the structure of long
polymeric chains, the interaction between any intermolecu-
lar pair of blobs statistically propagates in the shared volume
as a randomwalk following the random path of effective CG

sites. In the relevant volumeVb / R3
gb / N3=2

b l3, the number

of effective CG sites is of the order of n0b / �mR
3
gb=Nb /

N1=2
b �ml

3, leading to the observed scaling of N1=4
b .

From the analytical form of the effective potential,
Eq. (2), the pressure of the system can be calculated
explicitly. Specifically in the high density, long chain limit,
the pressure calculated in the virial route reduces to the
simple expression

P

�ckBT
� 1� Nc0�m

2
; (3)

where �c ¼ �m=N is the chain density. Equation (3) is in
agreement with the monomer level description [16], and
does not depend on the level of coarse-graining of the
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model selected. It should be noted that because both the
pressure and the compressibility are consistent with mono-
mer level PRISM, the equations of state predicted from the
virial and compressibility routes will show the same small
inconsistencies between the routes, which are inherent to
the approximations in integral equation theory [16,18]. The
important point is that the pressure and compressibility are
left unchanged from the monomer level description by the
coarse graining procedure on all levels.

To test the self consistency and the predictions of the
effective potentials we performed molecular dynamics
(MD) simulations of polymer melts using the LAMMPS

simulation package [19], in parallel on the San Diego
Supercomputer Center Trestles cluster accessed through
the XSEDE project. Simulations were performed both at
the atomistic level, by adopting the traditional united atom
model (UA-MD) with the established set of UA potentials
(intermolecular Lennard-Jones, harmonic bonds and angle
potentials) [20–22] and at the CG mesoscale level
(MS-MD) where each chain was represented as a collec-
tion of soft colloidal particles. MS-MD simulations for
the nb ¼ 1 case have been described previously [23–25].
To extend the model to cases where nb > 1, the ef-
fective bond between adjacent blobs was taken to be
Vbond ¼ 3kBTr

2=ð8R2
gbÞ þ VbbðrÞ þ kBT ln½1 þ hbbðrÞ�,

which enforces the correct distributions between adjacent
blobs [17], and an angle potential between sequential triples
on each chain which likewise enforces the correct angular
probability distribution [26]. Blobs more than two apart on
each chain were taken to interact via the intermolecular pair
potential VbbðrÞ of Eq. (2). All mesoscale simulations used
here are performed in the NVE (microcanonical) ensemble.
Values of the c0 parameter, entering �b in Eq. (2) and the
MS-MD, were taken from the UA simulations for short
chains. For systems with large N, which were too slow to
relax to be accessible through UA-MD, the c0 parameter
was extrapolated from the available UA data at small N at
the same monomer density, using the form predicted from
monomer level numerical PRISM theory, c0 ¼ aþ b=N,
with a and b optimized parameters. The values of c0
obtained from this procedure were found to be generally
consistent with calculations using long-established numeri-
cal monomer level PRISM models when an attractive part
to the monomer potential is included [16].

Figure 1 displays the effective intermolecular force
[FbbðrÞ ¼ � @Vbb=@r] between blobs, comparing the
numerical solution of the potential with the approximate
expression, Eq. (2). The approximate expression represents
correctly the force in real space going from the peak to
the long tail, which is the essential information needed
for the correct calculation of thermodynamic properties.
The inset in Fig. 1 shows the normalized Virial density
[N�2r3FbbðrÞ], whose integral is proportional to the
pressure, and which can be seen to be dominated by the
tail region of the potential (r > Rgb). The peak of the force

decreases with increasing blob length, Nb, at constant
density, �m, but its range increases in such a way that the
Virial integral ultimately reaches a plateau, which corre-
sponds to the leveling off of the pressure, as shown in
Fig. 2. The inset of Fig. 1 also shows that the effective
potential has a small attractive part at long range: such an
attractive component is a necessary condition for a stable
liquid to form, as a gas phase would be the state of lowest
free energy at any temperature for a system of purely
repulsive particles with no additional constraints. This
attractive contribution is partially of entropic origin and
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FIG. 1 (color online). Force curves for the nb ¼ 1model (solid
lines) and the approximated Eq. (2) (squares) for (top to bottom)
N ¼ 100 (red), N ¼ 200 (blue), N ¼ 500 (green), and N¼1000
(brown), along with force curves for models with a fixed blob
length, Nb ¼ 50, and increasing numbers of blobs (dashed lines,
from top to bottom): nb ¼ 2 (red), nb ¼ 4 (blue), nb ¼ 10
(green), and nb ¼ 20 (brown). Inset: Normalized virial density
[N�2r3FbbðrÞ] for the numerical forces (lines) and their analyti-
cal forms (squares) for nb ¼ 1. Degree of polymerization (N)
increases from top to bottom at the peak below 5Rgb. All systems

are at 400 K and density �m ¼ 0:03355 �A�3.
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FIG. 2 (color online). Pressure measured from simulations
with input CG forces from Fig. 1, where nb ¼ 1 (orange squares
connected by dashed guide lines), and Nb ¼ 50 with nb > 1
(open blue circles). Also depicted are UA-MD simulations
(green X symbols) for systems which relax fast enough for
UA-MD to be feasible (N � 200). Data are collected for in-
creasing degree of polymerization N, at the same values of N as
Fig. 1. All simulations were performed at 400 K and density
�m ¼ 0:03355 �A�3.
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partially due to the attractive component of the intermo-
nomer potential. Figure 2 shows that all simulations of the
same system, independent of the level of coarse graining,
generate not only consistent structure, as seen before, but
also consistent pressure.

The scaling of the potential is a property of the represen-
tation; increasing the number of monomers in each coarse
grained unit on each chain, with a fixed system density and
monomer interaction, results in an effective potential that
grows long-ranged because it captures the average effect of
the many-polymer correlations mapped into the effective
pair interactions. This is a consequence of the fractal di-
mension of polymers, which is of order two, as blob volume
increases with Nb faster than the chain can fill it, leading to
an increasing with Nb of the level of chain interpenetration.
If however, melts of increasingly long chains at the same
density are represented by increasing numbers of soft blobs
of fixed Nb, the range of the potential between blobs limits
to a fixed value with increasing chain length as the direct
correlation parameter c0 approaches its limit.

Analysis of these results shows that the range of the
effective potential is highly density dependent, both
explicitly and indirectly through the direct correlation
parameter, c0, as shown in Fig. 3. Also reported for com-
parison is the force generated from the potential of mean
force, which is a very poor representation of the ‘‘real’’
force at high densities.

Finally, Fig. 4 compares predictions of pressure as
a function of density for two samples with increasing
chain length, i.e. N ¼ 44 and N ¼ 100. Data from MS-
MD of the CG soft-blob representation show excellent
agreement with data from UA-MD in the range where
UA-MD were performed. The agreement appears to be
independent of the level of CG representation that is
adopted, as soft spheres and chains of soft blobs have

consistent pressure across the different levels of coarse
graining. The calculations are dominated by the presence
of the long-ranged tail of the potential, further validating
the proposed CG description. The range of separations over
which the effective potential must represent the average of
many-polymer effects increases dramatically with density.
While all levels of representation accurately reflect whole-
system thermodynamic averages and structural pair corre-
lations, a coarse grained description may be unable to
resolve processes below the length scale of the potential
tail, due to this averaging effect.
The difference between the scaling predictions for the

effective potential and the potential of mean force also
has very important implications for theories of polymer
melts. The strength of the potential of mean force,
wðrÞ ¼ �kBTln½1þ hbbðrÞ�, is found to scale for long

chains, or large blobs, and high densities as 1=ð�m

ffiffiffiffi
N

p Þ and
its range as N1=2 with c0 becoming irrelevant and wðrÞ
vanishing in the infinite chain limit. Use of the wðrÞ in
thermodynamic relations therefore results in vanishing en-
ergies and pressures in the long chain or high density limit,
which would imply the irrelevance of intermolecular inter-
actions and allow reduction of the system to a single chain
problem.While the effective pair potential at contact,Vbbð0Þ,
still vanishes in the infinite chain limit, its tail increases in
such a way that the Virial integral does not vanish. Likewise,
the average effective energy in the system also does not
vanish, and furthermore, both depend on the monomer level
direct correlation, and therefore on the monomer interaction
potential. This implies that even in the infinite chain limit,
intermolecular potentials do not become irrelevant, and
therefore cannot generally be neglected, as it is convention-
ally done in the description of polymer melt dynamics [27].
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In this Letter we have presented an analytical character-
ization of the soft pair potentials that arise in high level
coarse grained descriptions of interpenetrating polymer
melts, i.e., for soft-sphere and chains of soft-blob coarse
graining mappings of polymer melts. The form of the
potential and the pressure are obtained directly in terms
of parameters from the monomer level theory, without a
need for phenomenological correction forms in the poten-
tial and numerical optimization procedures. The effective
potentials for these CG models show characteristic long-
ranged ‘‘tails’’ that scale nontrivially with chain length,
density, and monomer interaction strength. This family of
CG models guarantees the consistency of the structure and
thermodynamics of the macromolecular liquid in any level
of soft representation, which is relevant in the modeling of
complex polymeric liquids, as well as in the design of
reliable multiscale modeling approaches to capture rele-
vant phenomena that may occur on many different length
scales. Dynamical properties will be accelerated in the CG
representation, and will have to be properly rescaled to
reconstruct the realistic dynamics [25].
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