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We theoretically study field-induced domain wall motion in an electrically insulating ferromagnet with

hard- and easy-axis anisotropies. Domain walls can propagate along a dissipationless wire through spin

wave emission locked into the known soliton velocity at low fields. In the presence of damping, the usual

Walker rigid-body propagation mode can become unstable for a magnetic field smaller than the Walker

breakdown field.
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Magnetic domain wall (DW) propagation in nanowires
has attracted attention because of the academic interest of a
unique nonlinear system [1–4] and potential applications
in data storage and logic devices [4–6]. The field-driven
DW dynamics is governed by the Landau-Lifshitz-Gilbert
(LLG) equation [1], which has analytical solutions in
limiting cases [1,7], such as the soliton solution [8] in the
absence of both dissipations and external magnetic fields.
The interplay between spin waves (SWs) and DWs has
also received attention, including DW propagation driven
by externally generated SWs [9–11] and SW generation
by a moving DW [12,13]. Our understanding of the field-
induced DW motion is nevertheless far from complete.
According to conventional wisdom, DWs move under a
static magnetic field only in the presence of energy dis-
sipation [1,14]. Numerical evidence against this view
therefore came as a surprise [12,15].

We report here a physical picture for the SW emission-
induced domain wall motion for a head-to-head DW in a
magnetic nanowire with the easy axis along the wire
(z direction) as shown in Fig. 1. Let Kk and K? be anisot-

ropy coefficients of the easy and hard axis (along the x
direction), respectively. An external field along the wire
rotates the DW out of the yz plane. The DW structure
thereby experiences an internal field in the x direction
twisting the DW plane and generating a nonuniform
internal field along the wire. This field causes periodic
deformations of the DW structure, such as ‘‘breathing’’
[1] by which the entire DW precesses around the wire
axis while its width shrinks and expands periodically.
The local modulation of the magnetization texture gener-
ates SWs (wavy lines with arrows in Fig. 1) that radiate
away from the DW center. The energy needed to generate
the SWs has to come from the Zeeman energy [14]
that is released by propagating the DW. The DW velocity
of a dissipationless ferromagnet in the steady state may
then be expected to be proportional to the SW emission
rate.

In this Letter, we numerically solve the LLG equation,
initially without damping in order to confirm the above
mentioned relation between spin wave emission and DW
propagation. Depending on K? and the magnetic field,
breathing or more complicated periodic transformations
of the DW emit spin waves. The DW propagation at low
fields tends to lock into a particular soliton mode in which
the energy dissipation rate due to the SW emission is
balanced by the Zeeman energy gain. We predict robust
spin wave emission that persists in the presence of Gilbert
damping and renders the usual Walker rigid-body propa-
gation mode unstable in a region below the Walker break-
down field.
The LLG equation reads

@m

@t
¼ �m� heff þ �m� @m

@t
; (1)

where m is the unit direction of the local magnetization
M ¼ mMs with saturation magnetization Ms and � is the
Gilbert damping constant. The effective magnetic field of
our wire with biaxial magnetic anisotropy (see Fig. 1) is
heff ¼ Kkmzẑ� K?mxx̂þ Ar2mþHẑ, consisting of in-

ternal and external fields in units of Ms. A is the exchange
constant. In a narrow stripe whose width and thickness do
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FIG. 1 (color online). Schematic transverse head-to-head DW

of width � in a magnetic nanowire. ~H is an external field along
the wire axis defined as the z direction. DW breathing and other
types of periodic DW deformations emit spin waves, denoted by
the wavy lines with arrows.
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not exceed the exchange length, the exchange interaction
dominates the stray field energy caused by magnetic
charges on the edges; the DW structure tends to be homo-
geneous in the transverse direction [15], i.e., behaves ef-
fectively one-dimensional (1D). Time, length, and energy
density are measured in units of ð�MsÞ�1 with gyromag-

netic ratio �, the DWwidth at equilibrium�0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi

A=Kk
q

,

and �0M
2
s , respectively. We chose parameters of the

electric insulator yttrium iron garnet (YIG) with
[11,16] A ¼ 3:84� 10�12 J=m, Kk ¼ 2� 103 J=m3, � ¼
35:1 kHz=ðA=mÞ, and Ms ¼ 1:94� 105 A=m. The corre-
sponding units of time and length are 1:46� 10�10 s and
1:38� 10�7 m, respectively. K? and � are treated as
adjustable parameters depending on the sample shape
and microscopic order. We solve Eq. (1) by a numerically
stable method [17]. The mesh size is chosen to be 0.009,
corresponding to the YIG lattice constant (1.24 nm).

In order to prove that a DW under an external field
indeed emits spin waves, we plot snapshots of the distri-

bution of m? �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
x þm2

y

q

for K? ¼ 4 and 10 (in units of

�0M
2
s ), � ¼ 0, and H ¼ 0:01 (for t > 0) at various times

in Figs. 2(a) and 2(b). At t ¼ 0, right before the external
field is switched on,m? follows theWalker DW profile [1],
and the DW is centered at z ¼ 0 in a wire with length
180�0, while the DW magnetization lies in the yz plane.
Curves are offset for better visibility. As time proceeds
(t > 0), SWs (wavy features) are emitted into both direc-
tions, while the DW center (peak) moves simultaneously
along the field slower than the SWs. The velocity v for
a fixed magnetic field increases monotonically with K?
(Fig. 3). It does not depend sensitively on small K?ð<4Þ
but grows rapidly when K? is close to 8 and becomes
an almost linear function for K? > 12. From the time

dependence of the position (dashed lines) of the DW center
and azimuthal angle (solid lines) shown in the insets of
Fig. 3 for a small and large K?, we trace the periodic DW
deformations in the different field regions. We note that
such a large K? value may be realized in YIG samples
subject to mechanical strains [18].
At a small K? ¼ 4 (left inset), m at the DW center

rotates around the wire, while the center position oscillates
back and forth but also moves slowly along the applied
field. This oscillatory motion is synchronized with the
breathing, i.e., the periodic energy absorption and release

in the form of periodic oscillation of the DW width � ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A=ðKk þ K?cos2�Þ
q

[1], where � is the tilt angle of the

DW plane (with equilibrium value �=2). This breathing
excites spin waves as shown in Fig. 2(a). Low velocities
correspond to weak SW emission. At a large K? ¼ 10
(right inset), the azimuthal angle of the DW center ap-
proaches a fixed value, and the DW center position moves
at a constant velocity, since � and the DW energy are
almost constant. In this case, m still rotates around the
wire axis, while the DW center propagates along the wire
with a fixed �. The large K? twists the DW plane into a
chiral screwlike structure that changes shape periodically
during the magnetization precession while the DW center
‘‘drills’’ forward. This drilling mode is much more efficient
in emitting SWs than the breathing mode, leading to a
relatively high DW propagating speed. For YIG parameters
the SW velocity exceeds that of the DW; therefore, in
contrast with Ref. [12], we observe bow as well as stern
SW excitations.
Figure 4(a) displays the steady state DW velocity in a

dissipationless wire with K? ¼ 4, 10, and 16 with parame-
ters otherwise identical to those of Fig. 3. As a function of
field it increases abruptly for small values, reaches a maxi-
mal value, and decreases again. When K? is reduced from

FIG. 2 (color online). Snapshots of m? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
x þm2

y

q

for H ¼
0:01 at various times t for (a) K? ¼ 4 and � ¼ 0; (b) K? ¼ 10
and � ¼ 0; (c) K? ¼ 4 and � ¼ 0:001; and (d) K? ¼ 10 and
� ¼ 0:001.

FIG. 3 (color online). K? dependence of the DW velocity v (in

units of ��Ms

ffiffiffiffiffiffiffiffiffiffiffiffi

A=Kk
q

) for fixed H ¼ 0:01 and � ¼ 0. Insets:

Time dependence of the DW center position (dashed line) and
the azimuthal angle � (solid line) of magnetization at the DW
center for K? ¼ 4 (left) and K? ¼ 10 (right).
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16 to 4, the DW changes from drilling to breathing motion,
resulting in a significant drop of DW velocity. The decrease
of DW velocity with field should not be interpreted as
suppression of DW propagation by the damping due to
spin wave emission [12,19]. The Zeeman energy released
by the DW motion at a rate 2HMv [14] should be equal to
the energy rate carried away by the SWs. Therefore, pro-
vided that the latter increases sublinearly with H ( / H�

and �< 1), the DW propagation speed must decrease with
field. The initial rapid rise of the DW velocity at small
fields is related to the soliton solution ln tanð�=2Þ ¼
�ðz� vtÞ=� of the LLG Eq. (1) with soliton velocity

v ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A=ðKk þ K?cos2�Þ
q

K? sin2� for � ¼ 0 and

H ¼ 0 [8], where � is the polar angle of m. This can be
seen from the plot of � sin2� for the saturated � vs

v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðKkþK?cos2�Þ=A
q

=K? (symbols) for H2½0;0:0009�
in the inset in Fig. 4(a) for K? ¼ 16. The numerical data
agree precisely with the soliton velocity formula (solid
line). Since conventional solitons do not satisfy the LLG
equation in the presence of an external field, we unearthed
here a hybridized mode of solitons and spin waves. In
contrast to the zero field case, there is only one particular
soliton mode in which the SW emission is balanced by the
Zeeman energy change, viz. the moving DW. This holds as
long as the field is smaller than the value at which� sin2�
reaches its maximum value 1. Beyond that field, the soliton
mode becomes instable, since the SWemission rate cannot
keep up with the released Zeeman energy and other propa-
gation modes have to take over. This soliton instability
point is emphasized by vertical bars in the data points for
K? ¼ 4 and K? ¼ 10, indicating the threshold fields
below which the soliton formula holds. For K? ¼ 16
this value is out of the range of Fig. 4(a).
For YIG parameters and K? ¼ 10, the DW velocity at

H ¼ 0:01ð�24 OeÞ is about 140 m=s. For comparison, the
corresponding DW velocity by Walker rigid-body propa-
gation for the same parameters and � ¼ 0:05 is 57 m=s
[1]. We may conclude that the DW velocity in weakly
dissipative magnetic insulators is of the same order of
magnitude as in highly dissipative ferromagnetic metals.
DW propagation through spin wave emission exists in

any magnetic wire with transverse magnetic anisotropy
irrespective of the Gilbert damping. Figures 2(c) and 2(d)
look very similar to Figs. 2(a) and 2(b) in spite of
the finite damping � ¼ 0:001. Naturally, in the presence
of damping the SWs can propagate only over finite
distances, which explains why they have been over-
looked in most experimental and numerical studies. In
Figs. 2(b) (or 2(a)) and 2(d) (or 2(c)), the DW velocity is
higher in the presence of a small nonzero damping, since
damping dissipates an energy on top of the SW emission
and the DW velocity is proportional to the energy dissipa-
tion rate [14]. Here we find a mixed DW propagation mode
that profits from both Gilbert damping and spin wave
emission. Figure 4(b) is the field dependence of the DW
velocity for � ¼ 0:001 and various K?, while other model
parameters are unmodified from Fig. 4(a). Except at very
small fields, Fig. 4(b) is similar to Fig. 4(a). The numeri-
cally obtained velocities (symbols) in Fig. 4(b) agree well
with Walker’s rigid-body propagation (solid curves) [1,13]
below some maximum field HM ’ 2ðKk=K?Þ0:25HW for

K? � Kk, where HW ¼ �K?=2 [1] is the Walker break-

down field. However, deviations are obvious for fields be-
tween HM andHW (where the solid lines end). This implies
that Walker rigid-body propagation is not stable for H 2
½HM;HW� with respect to the spin wave emission mode.

FIG. 4 (color online). (a), (b) Field dependence of DW veloc-
ity for various K?. Field and velocity are in units of 0:01Ms

and �
ffiffiffiffiffiffiffiffiffiffiffiffi

A=Kk
q

�Ms, respectively. A, Kk, and Ms are YIG para-

meters. (a) � ¼ 0. Inset: Symbols display � sin2� vs

v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðKk þ K?cos2�Þ=A
q

=K?, where v is the soliton velocity.

The line is the linear relationship from soliton theory.
(b) � ¼ 0:001. The solid curves are the corresponding Walker
solutions. (c) Snapshot of m? for H ¼ 0:007 and K? ¼ 16 at
t ¼ 400 [for the data point indicated by a circle in (b)]. The
numerical results deviate from the Walker profile that is clearly
narrower. Inset: Expanded view of m? close to the DW center.
The relative deviation from the Walker profile (solid curve) is
pronounced and spin wave emission is conspicuous.
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In order to prove numerically that the Walker solution is
stable only for H <HM, we solve the LLG Eq. (1) by
starting from an initial magnetization configuration that
deviates slightly from the rigid-body propagation mode.
The magnetization indeed converges to the Walker profile
for H <HM. However, this changes when we consider
H ¼ 0:007 for K? ¼ 16 [indicated by dashed circle in
Fig. 4(b)] with all other parameters the same. According
to Walker theory [1], HM ¼ 0:00344 and HW ¼ 0:008
[indicated by dashed lines in Fig. 4(b)]. The symbols in
Fig. 4(c) give a snapshot of m? for t ¼ 400, at which the
transients die out and the DW center propagates to about
z ¼ 97. The distribution deviates significantly from the
Walker profile (solid curve). The spin wave emission is
clearly observed in the expanded tail in the inset in
Fig. 4(c).

There are several corollaries of the DW propagation
mode by spin wave emission. The emitted spin waves
from one DW, for example, can mediate an attractive force
on a nearby DW by spin transfer [11]. This causes cross
talk in wires with more than one DW with consequences
for the ‘‘racetrack’’ memory [4]. This DW-DW attractive
force has a finite range governed by the Gilbert damping
and is sensitive to material parameters and geometry.
The increase of the effective damping by SW emission
[19] is not restricted to DWs but will appear in any time-
dependent magnetization texture including magnetic
vortices and cannot be captured by the Gilbert phenome-
nology. On the other hand, our results possibly open alter-
natives to manipulate and control the effective damping in
magnetic nanostructures. In contrast to what has been
reported earlier [12,15], we not only observe SW assisted
DW propagation but also reveal the underlying physical
principles. The present results have been obtained in the
limit of narrow wires, in which the domain wall texture is
simply transverse and the spin waves escape only in one
direction. In extended films, the domain walls contain
vortices and display more complex propagation patterns,
while the spin waves can be emitted in all directions.
A detailed study of this experimentally relevant regime
should be of considerable interest.

In conclusion, we reveal the physical nature of the DW
propagation through spin wave emission and give a mathe-
matical description of the motion in terms of hybridized
SW and soliton solutions. We prove that a DW in a wire
with a finite transverse magnetic anisotropy undergoes a
periodic transformation under an external magnetic field
that excites SWs. The energy carried away must be com-
pensated by the Zeeman energy that is released by DW
propagation along the wire. The DW propagation adopts
one particular soliton velocity at low fields. This SW
assisted DW propagation can be attributed to the SW
emission generated by DW breathing and drilling modes.
In the presence of damping it competes with and appears

before the Walker breakdown. Also, the spin wave emis-
sion will mediate a dynamic attractive force between DWs
with a range controlled by the Gilbert damping.
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[18] A. Hubert and R. Schäfer, Magnetic Domains (Springer,
Heidelberg, 1998).

[19] D. Bouzidi and H. Suhl, Phys. Rev. Lett. 65, 2587 (1990).

PRL 109, 167209 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

19 OCTOBER 2012

167209-4

http://dx.doi.org/10.1063/1.1663252
http://dx.doi.org/10.1063/1.1663252
http://dx.doi.org/10.1126/science.1108813
http://dx.doi.org/10.1126/science.1108813
http://dx.doi.org/10.1103/PhysRevLett.97.057203
http://dx.doi.org/10.1126/science.1145799
http://dx.doi.org/10.1126/science.1145799
http://dx.doi.org/10.1088/0022-3727/44/38/384005
http://dx.doi.org/10.1088/0022-3727/44/38/384005
http://dx.doi.org/10.1088/0953-8984/24/2/020301
http://dx.doi.org/10.1088/0953-8984/24/2/020301
http://dx.doi.org/10.1016/j.physrep.2008.07.003
http://dx.doi.org/10.1103/PhysRevLett.97.077205
http://dx.doi.org/10.1103/PhysRevLett.97.077205
http://dx.doi.org/10.1103/PhysRevLett.98.077201
http://dx.doi.org/10.1103/PhysRevLett.98.077201
http://dx.doi.org/10.1080/00018732.2012.663070
http://dx.doi.org/10.1063/1.3098409
http://dx.doi.org/10.1063/1.3098409
http://dx.doi.org/10.1063/1.3541651
http://dx.doi.org/10.1063/1.3541651
http://dx.doi.org/10.1103/PhysRevLett.107.177207
http://dx.doi.org/10.1103/PhysRevLett.107.177207
http://dx.doi.org/10.1103/PhysRevB.81.024405
http://dx.doi.org/10.1103/PhysRevB.81.024405
http://dx.doi.org/10.1063/1.3643037
http://dx.doi.org/10.1016/j.aop.2009.05.004
http://dx.doi.org/10.1016/j.aop.2009.05.004
http://dx.doi.org/10.1209/0295-5075/86/67001
http://dx.doi.org/10.1063/1.1688673
http://dx.doi.org/10.1063/1.1688673
http://dx.doi.org/10.1038/nmat3053
http://dx.doi.org/10.1038/nmat3053
http://dx.doi.org/10.1006/jcph.2001.6793
http://dx.doi.org/10.1006/jcph.2001.6793
http://dx.doi.org/10.1103/PhysRevLett.65.2587

