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We exploit a relation between the mean number N m of minima of random Gaussian surfaces and

extreme eigenvalues of random matrices to understand the critical behavior of N m in the simplest

glasslike transition occuring in a toy model of a single particle in an N-dimensional random environment,

with N � 1. Varying the control parameter � through the critical value �c we analyze in detail how

N mð�Þ drops from being exponentially large in the glassy phase to N mð�Þ � 1 on the other side of the

transition. We also extract a subleading behavior of N mð�Þ in both glassy and simple phases. The width

��=�c of the critical region is found to scale as N�1=3 and inside that region N mð�Þ converges to a

limiting shape expressed in terms of the Tracy-Widom distribution.
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Understanding the statistical structure of stationary
points (minima, maxima, and saddles) of random land-
scapes and fields of various types is a rich problem of
intrinsic current interest in various areas of pure and ap-
plied mathematics [1,2]. It also has kept attracting steady
interest in the theoretical physics community for more than
fifty years [3–8], with recent applications to statistical
physics [9,10], string theory [11], and cosmology
[12,13]. For a landscape described by a sufficiently smooth
random function H ðxÞ of N real variables x ¼
ðx1; . . . ; xNÞ the problem of counting all stationary points
amounts to finding solutions of the simultaneous stationar-
ity conditions @kH ¼ 0 for all k ¼ 1; . . . ; N, with @k
standing for the partial derivative @

@xk
. Finding the total

number NðDÞ
tot ¼ R

D �ðxÞdNx of stationary points in any

spatial domain D amounts to knowing the corresponding
density �ðxÞ essentially given by the Jacobian associated
with the Hessian @2k1;k2H of the random surface at sta-

tionary points. In particular, the mean value of such density
is given by the so-called Kac-Rice formula

�avðxÞ ¼
�
j detð@2k1;k2H ÞjYN

k¼1

�ð@kH Þ
�
; (1)

where �ðxÞ stands for the Dirac’s � function and brackets
here and henceforth denote the ensemble average. For a
general random surface, the problem of evaluating the
averages involving the modulus of the Jacobian is rather
difficult and no efficient technique seems to be known to
perform the task [14]. However, as was first noticed in
Ref. [7] such calculation can be indeed completed for
Gaussian fields H ðxÞ such that their covariance structure
hH ðx1ÞH ðx2Þi depends only on the Euclidean distance
jx1 � x2j and is therefore invariant under rotations. For
such fields, it turns out to be possible to reduce (1) to

evaluating the mean density of eigenvalues of the
Gaussian orthogonal ensemble (GOE) of real N � N ran-
dom matrices for which a closed-form expression is well
known [15]. This observation and its further ramifications
proved to be very useful in estimating the probability
density of the highest maximum of such surfaces [2],
for obtaining detailed information about large-N asymp-

totics of NðDÞ
tot in spherical spin-glass models [16] and in

counting stationary points of random superposition of ei-
genfunctions of Laplacian operator on high-dimensional
manifolds [17].
Among various possible types of random Gaussian land-

scapes we will concentrate on arguably the simplest, yet
nontrivial model
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FIG. 1 (color online). Plot of the shape of the (log of the) mean
number of minima hN mi for N ¼ 10 000 (a) for �<�c:
hN mi � eSN (blue dashed line), (b) in the transition region �

�c
¼

1þ �N�1=3 (red solid line: lnN ð�Þ), and (c) for �>�c:
hN mi � 1 (black solid line: lnhN mi ¼ 0).
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H ¼ �

2

XN
k¼1

x2k þ Vðx1; . . . ; xNÞ; (2)

where �> 0 is the main control parameter and VðxÞ is a
random mean-zero Gaussian-distributed field character-
ized by a particular (translational invariant) covariance
structure,

hVðxÞVðyÞi ¼ Nf

�
1

2N
ðx� yÞ2

�
; (3)

where fðxÞ is any smooth function, which in this paper we
consider suitably decaying at infinity.

Looking at (2) as a certain random energy surface,
one can associate it with the equilibrium statistical me-
chanical model of a single particle equilibrated by thermal
forces as described by the corresponding equilibrium

Boltzmann-Gibbs measure p�ðxÞ ¼ e��VðxÞ=Zð�Þ, with

� ¼ T�1 being the inverse temperature and Zð�Þ being
the associated partition function. The model can be then
studied in the framework of the replica trick method (see
Refs. [18–20]) though nowadays a rigorous mathematical
treatment of models of such type is possible as well; see,

e.g., Ref. [21]. The analysis reveals that for �<�c ¼ffiffiffiffiffiffiffiffiffiffiffi
f00ð0Þp

the model exibits for N ! 1 a well-defined ther-
modynamic transition to a glassy phase with single-step
broken replica symmetry. In particular, in the latter phase
confined to the lower-temperature region T < Tcð�Þ in the
�� T plane the thermodynamic expectation value of the
particle displacement 1

N

R
x2p�ðxÞdx becomes T indepen-

dent; i.e., particle remains frozen below the transition line.
It is therefore conventional to consider such a model as a
toy system describing the glasslike freezing transition. The
transition temperature Tcð�Þ tends to zero when � ! �c,
so that for �>�c even for T ¼ 0 the system remains
in the replica-symmetric phase. On the other hand, for
�<�c the replica symmetry at zero-temperature is bro-
ken. In this way, the model provides a rather unique
possibility of studying zero-temperature glass transition
by varying the control parameter �.

As the statistical mechanics at T ! 0 is expected to
be dominated by minima in the energy landscape, the
existence of the zero-temperature phase transition suggests
that the number of landscape minima N m in the two
phases should be qualitatively different. Namely, it is ex-
pected that N mð�Þ / exp½N�mð�Þ�, with �mð�Þ> 0 for
�<�c when the random part ofH dominates, but drops
to a subexponential value for �>�c when the harmonic
part ofH dominates and tends eventually toN m ¼ 1 for
� ! 1. In such a context, it is natural to call the quantity
�mð�Þ> 0 the complexity of minima.

Even for such a simple model (2), understanding the
statistical properties of the number of minima N mð�Þ is
difficult, and to a large extent an open problem. Some
progress is possible if one concentrates on studying the
simplest informative quantity, the mean value hN mð�Þi.

And even analyzing that mean as a function of � is not
at all trivial, and is actually the subject of the present
Letter. To that end, let us recall that the original paper [7]
concentrated on analyzing even simpler quantity, the mean

of the total number of stationary points NðDÞ
tot ð�Þ, and on

extracting the associated cumulative complexity �tð�Þ.
Further developments of the method proposed in
Ref. [22], and applied to the present model in Ref. [23],
allowed us to evaluate the complexities associated with the
mean number of stationary points with any extensive index
I ¼ �N � 1 with �> 0, where the index I is defined as
the number of negative eigenvalues of the Hessian at the
stationary point. One then can consider the formal limit
� ! 0 and in this way extract the supposed complexity of
minima which turned out to be given by [23]

�mð�Þ ¼ � ln

�
�

�c

�
� �2

2�2
c

þ 2�

�c

� 3

2
when �<�c

(4)

and �mð�Þ ¼ 0 for �>�c. Note, however, that � ! 0
can not distinguish genuine minima with I ¼ 0 from any
other saddle points with nonextensive 0< I � N.
The goal of this Letter is to perform the accurate evalu-

ation of hN mi directly from the first principles, and in
particular to analyze in great detail the so-called critical
regime, i.e., the vicinity of the critical point� ¼ �c where
the number of minima drops from its exponentially big
value in the glassy phase�<�c to a subexponential value
for �>�c. Our starting point is the general Kac-Rice
expression for the mean number of minima hN mi ¼R
�mðxÞdNx with �mðxÞ now given by [cf., (1)]

�mðxÞ ¼
�
j detð@2i;jH Þj�ð@2i;jH ÞYN

k¼1

�ð@kH Þ
�
; (5)

where the matrix Heaviside step function �ðAÞ ¼ 1 for
positive definite matrices and zero otherwise, which en-
sures that only strict minima are contributing to the count-
ing. For the model in question (2) we can now follow the
method of Ref. [7] and show that

hN mi ¼ 1

�N

Z þ1

�1
dt

ffiffiffiffiffiffiffi
N

2�

s
e�Nðt2=2ÞKNðztÞ; (6)

where zt ¼ �þ�ct and we introduced

KNðzÞ ¼ hj detðz�M0Þj�ðz�M0ÞiM0
; (7)

where the average now goes over the random matrix M0

taken from the so-called GOE [15] with the probability
density PðM0Þ ¼ CN expf� N

4�2
c
trM2

0g. Using the OðNÞ
invariance of the GOE measure, we can introduce the
eigenvalues �i of M0 and in the standard way [15] find

that KNðzÞ ¼ z�1
N ð2�2

c=NÞ½NðN�1Þ=4�þN ~	NðyÞ with z and y

related by z ¼ y
ffiffiffiffiffiffi
2�2

c

N

q
, the normalization factor zN given by
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zN ¼�NðNþ1Þ=2
c

�
2

N

�
NðNþ1Þ=4� 2ffiffiffiffi

�
p

�
Nð2�ÞN=2

YN
j¼1

�ð1þj=2Þ;

(8)

and where

~	NðyÞ ¼
Z y

�1
d�1 . . .

Z y

�1
d�N

Y
i<j

j�i � �jj

�YN
i¼1

ðy� �iÞe�ð�2
i =2Þ: (9)

In fact in the mathematical literature, one frequently
uses the standardized GOE defined as the ensemble of
real symmetric N � N matrices M with the measure

P ðMÞ / e�ð1=2ÞtrM2
. To that end we define the partition

function ZNðyÞ as
ZNðyÞ ¼

Z y

�1
d�1 . . .

Z y

�1
d�N

Y
i<j

j�i � �jje�ð�2
i =2Þ: (10)

By definition, the probability that the maximal eigenvalue
of a standardized GOE matrix M is smaller than some
value y is given by

PNð�max � yÞ ¼ ZNðyÞ
ZNð1Þ : (11)

Our key observation is that the function ~	NðyÞ is related to
the above cumulative distribution (11) as

dZNðyÞ
dy

¼ Ne�ðy2=2Þ ~	N�1ðyÞ: (12)

Moreover, a simple change of variables shows that

ZNð1Þ ¼ zNð
ffiffiffiffiffiffi
N
2�2

c

q
ÞNðNþ1Þ=2. In this way, we can express

the mean number of minima of our random energy surface

as hN mi ¼ ð�c

� ÞN 2ðNþ3Þ=2�ðNþ3
2 Þffiffiffi

�
p ðNþ1ÞNN=2 INð�=�cÞ where

INð�=�cÞ ¼
Z þ1

�1
eðy2=2Þ�ðN=2Þðy

ffiffiffiffiffiffiffi
2=N

p
��=�cÞ2

� d

dy
½PNþ1ð�max � yÞ�dy (13)

with PNð�max � yÞ defined in (11). It is appropriate to
mention that a closely related formula appeared also in
Ref. [16] in the context of studying the extrema of the
random energy surface for the so-called spherical model of
spin glasses.

The main utility of the above observation is in the fact
that the behavior of the cumulative distribution of the
maximal eigenvalue of GOE matrices for large N was
thoroughly studied in various regimes in recent years,
starting from the famous work by Tracy and Widom [24].
In particular, most detailed large-deviation results were
obtained in Ref. [25] for the left tail and [26] for the right

tail for the regime N � 1 and y ¼ s
ffiffiffiffi
N

p
with fixed s. For

example, the left tail is given by

d

dy
½PNð�max � yÞ� � e��Nðy=

ffiffiffi
N

p Þ for y <
ffiffiffiffiffiffiffi
2N

p
(14)

where y� ffiffiffiffiffiffiffi
2N

p ¼ Oð ffiffiffiffi
N

p Þ and [25,27]

�NðsÞ ¼ N2c�ðsÞ � N�1ðsÞ þ
1 lnN þ�2ðsÞ

c�ðsÞ ¼ s2

3
� s4

108
�
�
s3

108
þ 5s

36

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 6

p

� 1

2
ln

�
sþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ 6
p

3
ffiffiffi
2

p
�

(15)

and explicit expressions for �1;2ðsÞ and 
1 are rather long

and can be found in Ref. [25]. On the other hand, the right
large-deviation tail is given by [26]

d

dy
½PNð�max � yÞ� � e�NcþðsÞ

2
ffiffiffiffi
�

p ð�2þ s2Þ1=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2þ s2

pp
(16)

for s ¼ yffiffiffi
N

p and y >
ffiffiffiffiffiffiffi
2N

p
where [26,28]

cþðsÞ ¼ s2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

s2

s
þ ln

2
4

ffiffiffiffiffi
s2

2

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

2
� 1

s 3
5: (17)

These results allow us to get the behavior of the mean
number of minima by extracting the appropriate asymp-
totic from the integral (13) for large N via the saddle point
method. Using (16), we find for �>�c the following
equivalent:

hN mi � 1 when �>�c (18)

which is much more precise than just the statement of
vanishing complexity. It turns out we just have on average
one single minimum not only for � � �c as one might
naively expect, but immediately for all �>�c. Similarly,

(14) implies that hN mi � eSNð�=�cÞ for �<�c where

SN

�
�

�c

�
¼ N�

�
�

�c

�
þ ffiffiffiffi

N
p

�1

�
�

�c

�
(19)

þ N1=4�2

�
�

�c

�
þ�3

�
�

�c

�
; (20)

with the leading term �ðyÞ ¼ � lnðyÞ � y2

2 þ 2y� 3
2

coinciding with the complexity of minima Eq. (4) found
in Ref. [23] and subleading terms given by �1ðyÞ ¼
4
3

ffiffiffi
2

p ð1� yÞ3=2, �2ðyÞ ¼ � 2
3 2

3=4ð1� yÞ3=4, and

�3ðyÞ ¼ �2þ 2yþ 1

4
y2 þ 137 ln2

96
þ ln�

2
þ (21)

þ 23

32
lnð½1� y�N1=3Þ þ 1

2
� 0ð�1Þ: (22)

It is easy to check that �ð�Þ / ð�c ��Þ3 when approach-
ing the transition point as was already noticed in Ref. [23].
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This should be contrasted with the cumulative complexity
for all stationary points (instead of minima) vanishing as
�tð�Þ / ð�c ��Þ2 [7]. The difference is significant as it
has implications for the width of the so-called transition
region j���cj, where the two phases of the system
become indistinguishable for large but finite N � 1.
Here we argue that it is the complexity of minima which
provides the correct scaling. Indeed, as shown in Ref. [20],
the difference �F between the zero-temperature free en-
ergies F ¼ �limT!0T lnZð�Þ of the replica-symmetric
solution and one with broken replica symmetry is of the
order of Nð�c ��Þ3 close to the transition point. Thus,
thermodynamically the two phases cease to be distinguish-
able precisely in the same region when the leading term
N�ð��c

Þ in the lnN mð�Þ becomes of the order of unity.

One may consider this as an independent confirmation of
the thermodynamic relevance of minima, rather than of the
totality of stationary points for the glass transition.

Moreover, we further see that for j���cj � N�1=3 not
only the leading term N�ð��c

Þ but all the subleading terms

in (19) become simultaneously of order of unity. This fact

implies that in the transition region where ð��c
� 1ÞN1=3 ¼

� is of the order of unity the mean number of minima tends
to a N independent function of the scaling variable �. To
find that limiting shape, we use the celebrated Tracy-
Widom law [24] for the probability of the maximal eigen-
value of the standardized GOE matrix

PN

�
�max �

ffiffiffiffiffiffiffi
2N

p

N�ð1=6Þ=
ffiffiffi
2

p � x

�
�F 1ðxÞ as N ! 1; (23)

where F 1ðxÞ is a special solution of the Painlevé II equa-
tion. Using this fact, we can rewrite (13) as

INð�=�cÞ ¼
Z

ehNðxÞdx; (24)

hNðxÞ ¼ y2x
2
� N

2

 
yx

ffiffiffiffi
2

N

s
� �

�c

!
2

þ lnF 1
0ðxÞ; (25)

and yx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN þ 1Þp þ x ðNþ1Þ�ð1=6Þffiffi

2
p . For large N, the inte-

gral computed by the saddle point method is dominated by
the vicinity of x� such that

� d

dx
½lnF 0

1ðx�Þ� ¼ �: (26)

We thus get hN mi �N ð�Þ in the transition region �
�c

¼
1þ �N�ð1=3Þ where the limiting shape N ð�Þ is given by

N ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�

� d2

dx2
½lnF 0

1ðxÞ�jx�

vuut 2F 0
1ðx�Þex���ð�3=3Þ; (27)

where x� is the solution of (26). It is not difficult to check
that the scaling function (27), which is one of the main

results of this work, matches smoothly the two regimes
�<�c [cf., (19)] and �>�c [cf., (18)] as shown in
Fig. 1.
In conclusion, we investigated in great detail the mean

number of minima of the random energy function in a toy
model of the glass transition and determined the precise
scaling form of that number at the transition region be-
tween the two phases. It turned out to be related to the
Tracy-Widom distribution well-known in the random ma-
trix theory. Note that such distribution was also shown to
describe fluctuations of transition temperature in mean-
field spin glasses[29]. We hope that similar methods could
prove useful in the problem of understanding the ground
states fluctuations of glassy systems, which has attracted
growing interest in recent years [30].
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