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Strain-induced gradients of local electric fields in semiconductor quantum dots can couple to the

quadrupole moments of nuclear spins. We develop a theory describing the influence of this quadrupolar

coupling on the spin correlators of electron and hole ‘‘central’’ spins localized in such dots. We show that

when the quadrupolar coupling strength is comparable to or larger than the hyperfine coupling strength

between nuclei and the central spin, the relaxation rate of the central spin is strongly enhanced and can be

exponential. We demonstrate a good agreement with recent experiments on spin relaxation in hole-doped

(In,Ga)As self-assembled quantum dots.
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The spin of an electron or a hole in a semiconductor
quantum dot is the main component of numerous proposed
spintronic and quantum computing devices [1]. Spin deco-
herence and finite spin lifetimes are currently the major
factors that limit our ability to control spin states in dots. A
single ‘‘central’’ (i.e., electron or hole) spin in a dot interacts
via hyperfine coupling with a large number (104–106) of
nuclear spins. The net effect of this coupling to the nuclear
spin bath can be characterized by an effective Overhauser
magnetic field Bn that acts upon the central spin. Within a
quantum dot ensemble, each central spin precesses around a
different Bn. If Bn is time independent, such precession
alone cannot lead to complete relaxation of the central spin
polarization. This is evidenced from the observation of spin
echoes [2] that can be used to cancel the dephasing of
central spins in an ensemble of dots with different constant
Bn. However, stochastic dynamics of the Overhauser field
Bn induces irreversible relaxation of the central spin and
loss of coherence [3,4]. The physics that leads to changes of
Bn and its corresponding influence on central spin relaxa-
tion are the subject of considerable theoretical debate [4–9].

It was suggested that, at microsecond time scales, the
dynamics of the Overhauser field is dominated by
hyperfine-mediated nuclear co-flips, which originate from
unequal strengths of the hyperfine couplings of the central
spin to different nuclear spins inside the same dot [4].
Numerical simulations by Al-Hassanieh et al. [9] showed
that such co-flips generally lead only to a logarithmically
slow central spin relaxation. In contrast, recent experimental
studies with hole-doped (In, Ga)As quantum dots reported a
nearly ideal Lorentzian shape of the spin noise power spec-
trum, indicating exponential relaxation of central hole spins
rather than a power-law or logarithmic relaxation [10].

Here we show that quadrupolar couplings (QC) of nu-
clear spins to the strain induced electric field gradients
inside typical semiconductor quantum dots can induce
relatively fast dynamics of the Overhauser field Bn, and

consequently accelerated relaxation of electron and hole
spins in weak external fields. Our model directly applies to
InGaAs self-assembled quantum dot systems, which are
among the most popular platforms for spin memories and
qubits [11,12]; however, the model applies generally to all
dots composed of quadrupolar-active nuclei. We model
such a nuclear spin bath by introducing static fields acting
on nuclear spins due to QC, in addition to the hyperfine
couplings to the central spin. We numerically compute the
dynamics of our model by applying a time-dependent
mean field algorithm [9] that allows us to study the relaxa-
tion of a central spin coupled to an unpolarized spin bath
containing up to ten thousand nuclear spins.
At low temperatures and at time scales shorter than a

millisecond, a Hamiltonian that captures central spin dy-
namics in quantum dots has the following form:

Ĥ ¼ XN

i¼1

½�i
kÎizŜz þ �i

?ðÎixŜx þ ÎiyŜyÞ�

þ gzBzŜz þ gxBxŜx þ gyByŜy

þXN

i¼1

�i
Q

2

�
ðÎi � niÞ2 � IðI þ 1Þ

3

�
; (1)

where Ŝ and Îi stand for spin operators of, respectively,
central and nuclear spins; B� is an applied magnetic field
component along the axis �; g� is the corresponding
component of the central spin g factor. Index i runs through
all nuclear spins that interact with the central spin.
Parameters �i

k and �i
? are the out-of-plane (longitudinal)

and in-plane (transverse) coupling strengths, respectively,
between the central spin and ith nuclear spin. Henceforth,
we drop index i for coupling strengths when we discuss
their typical magnitudes. For electrons, �k and �? have

similar magnitudes, but �k and �? are quite different for

holes. For the latter case, the ratio of transverse to out-of-
plane couplings, � ¼ �?=�k varies in different samples in
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the range [10,13] �� 0:1–0:7. Additional coupling terms

in the Hamiltonian such as �ŜzÎix are allowed but they
were estimated to be negligibly small both in electron and
in hole-doped dots [13], and we will disregard them. We
also disregard the Zeeman coupling between the external
field and nuclear spins because we consider only weak
external fields, about the size of the Overhauser field
(� 25 Gauss for an InGaAs hole doped dot [10]).

The last term in (1) describes QC with characteristic
strength �i

Q, and coupling anisotropy vector ni for the ith

nuclear spin. QC is allowed for nuclei having spin larger
than 1=2. QC has previously proved important in experi-
ments on polarized spin bath relaxation in GaAs [14–18];
however, it has been generally disregarded in the context of
central spin relaxation with initially unpolarized nuclear
spin baths, both in electron [5,6,9] and in hole-doped [13]
dots. We believe that this omission cannot be justified
except in certain materials, such as Si, that contain pre-
dominantly spin-0 or spin-1=2 nuclei. In the widely studied
InGaAs dot system, the most abundant indium isotopes
115In and 113In have I ¼ 9=2, and Ga and As isotopes have
I ¼ 3=2. According to many studies [14,15,19], �Q �
2–4 MHz for indium atoms in GaAs at a typical strain of
3%–4% inside a dot, which translates for spin 9=2 into a
characteristic level splitting �c � �QjIj � 10 MHz. This
value is at least an order of magnitude larger than the
effective hyperfine coupling �k � 0:1–0:5 MHz in a typi-

cal hole-doped quantum dot with N � 105 nuclei [13,20].
Recent NMR studies of InGaAs dots also showed that the
directions of QC anisotropy axes ni are strongly nonuni-
form inside a dot and do not align with the sample growth
anisotropy [19]. To include this fact, we will assume that
the local anisotropy vector ni for the ith nuclear spin points
in a random direction, which is chosen independently for
each nuclear spin. Note that this does not exclude arbitrary
spatial correlations of different ni inside the dot.

The Hamiltonian (1) belongs to the class of spin bath
models, in which noncollinear static fields act on nuclear
spins independently of the coupling to the central spin. In
order to compare different models of this class, we intro-
duce a parameter �c that characterizes the typical energy
level splitting of nuclear spins by static fields. Our theory
shows that this parameter determines all the essential
effects of the static fields irrespective of the details of the
interactions. This renders our theory applicable to spin
baths with different sizes of nuclear spins I. Our results
extend beyond the Hamiltonian (1). In fact, the minimal
model of our class of spin baths can be formulated in terms
of the central spin problem with only a nuclear spin-1=2
Hamiltonian:

Ĥ ¼ B � �̂ þXN

i¼1

½�i
k�̂z�̂

i
z þ �i

?ð�̂x�̂
i
x þ �̂y�̂

i
yÞ

þ �i
cð�̂i � niÞ�; (2)

where the last term mimics the effect of QC, �̂ is the Pauli
operator of the central (electron or hole) spin, �̂i

� is the �
component of the Pauli operator for the ith nuclear spin,
and �i

c corresponds to the size of the characteristic level
splitting for the ith nuclear spin with quantization axis ni.
We will compare, in Fig. 2, the dynamics of the model

with the Hamiltonian (1) for the spin bath with I ¼ 1 and
the minimal model (2) at the same characteristic value of
�c. Results are almost indistinguishable, so in the rest of
the main text, we will show numerical results only for the
minimal model to illustrate all the effects.
In the Supplemental Material [21], we describe the time-

dependent mean field approach and provide additional
numerical tests for evolution with N from 250 to 10 000
nuclear spins, the Hamiltonian (1) with I ¼ 1, and the
classical limit I � 1, which are all found to be in very
good agreement with the theory that we develop here.
We present our results for central spin temporal corre-

lators that were obtained for the model (2) with N ¼ 700
spin-1=2 nuclei at equilibrium. Before each simulation, we
chose �i

k ¼ 2�k � r1i, �i
? ¼ 2��k � r2i and �i

c¼2�c �r3i,
where r1i, r2i, and r3i are random numbers from a uniform
distribution in the interval (0, 1). We set the energy scale so
that �k ¼ 1. Note that we chose widths of parameter dis-

tributions to be comparable to the mean values as sug-
gested in [9]. Vectors ni point in random directions and the
time step was dt ¼ 0:0001. Averaging was performed over
1000 and over 30000 randomly chosen initial state vectors
(both for central and nuclear spins) for the calculation of,
respectively, noise power and real-time correlators.
In Fig. 1(a), we show our numerical results for the

central spin correlator, C2ðtÞ ¼ h�̂zðtÞ�̂zð0Þi, obtained
from the evolution of the Hamiltonian (2) in the absence of
quadrupolar interactions (�c ¼ 0). Different curves corre-
spond to different values of the coupling anisotropy �. All
curves start at C2ð0Þ ¼ 1. Figure 1(b) resolves the part of
Fig. 1(a) with t < 0:5. The appearance and shape of the
deep local minimum of C2ðtÞ in Fig. 1(b) is well under-
stood [4,13] as being due to dephasing caused by ensemble

FIG. 1 (color online). Spin correlator C2ðtÞ ¼ h�̂zðtÞ�̂zð0Þi at
�c ¼ 0, �k � h�ki ¼ 1, N ¼ 700 nuclear spins, and B ¼ 0,
shown up to times (a) t ¼ 5=�k and (b) t ¼ 0:5=�k (time t is
in units of 1=�k). Here � ¼ �?=�jj is the hyperfine coupling

anisotropy.
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central spin precession around the Overhauser fields Bn ¼P
N
i¼1½�i

?h�̂i
xixþ �i

?h�̂i
yiy þ �i

kh�̂i
ziz�. Figure 1(a) shows

that a fraction of the central spin polarization additionally
relaxes during a longer time interval that is of order 1=h�ki.
This relaxation follows from the co-flip effect [5,6,9].
Figure 1(a) confirms previous observation [9], which was
made for the case � ¼ 1, that only a fraction of the central
spin polarization relaxes via this mechanism on time scales
of interest. It also shows that the correlator decay is
strongly suppressed by hyperfine coupling anisotropy.
This means that standard co-flip effect cannot explain the
observed spin relaxation at a fraction of a microsecond in
experiments with hole-doped dots [10,11,22], for which
1=h�ki corresponds to several microseconds [13].

Figure 2 shows the central spin correlator C2ðtÞ for
several different mean values of QC [as tuned by the static
field �c to compare spin-1=2 bath in Figs. 2(a) and 2(b) and
spin-1 bath with �i

Q ¼ 4�i
c in Figs. 2(c) and 2(d)] at strong

anisotropy � ¼ 0:2. The effect of �c � 0 is considerable.
Even at �c ¼ 0:2< h�ki, relaxation of the central spin is

already much faster than at �c ¼ 0. For �c > �k, we find

qualitative changes: the local minimum disappears, relaxa-
tion becomes almost complete and furthermore becomes
exponential [see Fig. 2(b)]. At �c > 8, the exponential
relaxation rate saturates at a value that does not depend
on �c any longer. Figures 2(c) and 2(d) show analogous
results for the nuclear spin bath with the Hamiltoninan (1)

and I ¼ 1 with �i
Q ¼ 4�i

c, which corresponds to the same

characteristic splitting of energy levels by QC. It shows
that by changing the size of spins and form of the coupling
but keeping the same characteristic �c, the form of the
central spin correlator does not change.
To better understand this change of behavior, it is in-

structive to look at the dynamics of Bnz, the Overhauser
field component along the z axis. Figure 3 shows examples
of BnzðtÞ starting from a random initial condition for all
spins. When �c ¼ 0, Bnz is practically frozen. However,
for �c > �k values, Bnz quickly fluctuates with the ampli-

tude of the typical Overhauser field strength. Figure 3(b)
shows that in the latter case, the bath spin correlator
Cbath
2 ðtÞ ¼ hBnzðtÞBnzð0Þi decays during t < 1=�c to a

smaller but nonzero value. For �c � �k, nuclear spins

simply precess around their local static fields from the
QC. Fluctuations that are seen in Fig. 3(a) are then merely
due to the difference of precession frequencies and pre-
cession axis directions for different nuclear spins in one
dot. In contrast, when �c=�k < 1, nuclear spin precessions
are synchronized by a stronger hyperfine coupling that
suppresses fluctuations of Bnz.
When �c > �k, there can be two distinct regimes of

central spin polarization dynamics. The first regime ap-
pears when fluctuations of the Overhauser field are so fast
that the adiabaticity conditions break down and the central
spin polarization cannot follow the direction of the
Overhauser field. This most likely can happen when Bnz

passes through zero values and the Landau-Zener transition
probability, pLZ ¼ 1� exp½��ðBn?Þ2=v� is substantially
different from unity. Here v ¼ ðdBnz=dtÞBnz¼0 and Bn? �
�?

ffiffiffiffi
N

p
is the typical value of the Overhauser field trans-

verse to the z-axis direction. In this case, each time Bnz

changes sign, the central spin has substantial probability of
not following the Overhauser field so that its dynamics
become stochastic with exponential relaxation of the cen-
tral spin correlator [23]. To estimate pLZ we note that,
according to Fig. 3(b), when �c > �k, the time 1=�c sets

the scale for the correlator decay time of the Overhauser
field. The latter changes during this time by the amount

�Bnz � �k
ffiffiffiffi
N

p
. Hence, the rate of change of the

FIG. 2 (color online). (a) The real time central spin-spin cor-
relator for different magnitudes of the static field �c in spin-1=2
bath. (b) Exponential fit (dashed red) of the spin correlator (blue)
for spin-1=2 bath at �c ¼ 12 in units of �k. (c) Central spin

correlator in spin bath with I ¼ 1 and quadrupole coupling
�i
Q ¼ 4�i

c. (d) Exponential fit (dashed red) of spin correlator

in spin-1 bath at �c ¼ 12. In all cases: � ¼ 0:2 and B ¼ 0.

FIG. 3 (color online). For � ¼ 0:2: (a) Typical Overhauser
field dynamics for �c ¼ 0 (horizontal line) and �c ¼ 8
(fluctuating curve). (b) Real time Overhauser field correlator
Cbath
2 ðtÞ ¼ hBnzðtÞBnzð0Þi.
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Overhauser field is v� �k
ffiffiffiffi
N

p
�c, and exponential relaxa-

tion can occur when two conditions are satisfied:

�c > �k; and � � �2�jj
ffiffiffiffi
N

p
=�c < 1: (3)

For our numerical test with N ¼ 700 and � ¼ 0:2, we find
that (3) is satisfied when �c=�k � 1. This result is in

agreement with Fig. 2. The exponential relaxation time,
�rel, roughly corresponds to the value of 1=�c at which

pLZ � 1=2, i.e., �rel � 1=½�2�k
ffiffiffiffi
N

p �. For the hole-doped

dots [10,22], we assume N ¼ 105, � ¼ 0:2, �c=�k ¼ 25,
which gives � ¼ 0:4< 1; i.e., it agrees with the observed
Lorentzian shape of the hole spin noise power spectrum in
Ref. [10]. Considering that 1=�k corresponds to several

microseconds in hole-doped dots, we find the relaxation
time to be a fraction of a microsecond, which also agrees
with the experimentally measured value �rel � 0:4 	s at a
zero external field [10]. Our model is also in good agree-
ment with other experimental observations: For example,
when an external out-of-plane magnetic field was applied,
the central spin relaxation was suppressed [10,11] when

this field exceeded �k
ffiffiffiffi
N

p
. In Fig. 4(a), we confirm this fact

numerically. Figure 4(b) also shows our numerical results
for the effect of an applied magnetic field on the hole
spin noise power spectrum, Pð!Þ ¼ R

dtei!th�̂zðtÞ�̂zð0Þi,
which is in good agreement with experimental measure-
ments of this spectrum in external fields [10,11].

The second regime corresponds to the case when fluc-
tuations of the Overhauser field are strong but the central
spin follows the direction of the Overhauser field adiabati-
cally. This happens when

�c > �k; � > 1: (4)

For electron-doped InGaAs dots, condition (4) would likely
be satisfied because of a lack of anisotropy (�¼1).
Assuming that such a dot has N�105 nuclei and
�c=�k ¼ 3, we find �� 102 � 1; i.e., the central spin

dynamics is well with the adiabatic regime. For such con-
ditions, the central correlator has to follow the correlation
pattern of the Overhauser field, as in Fig. 3(b).

Figure 5(a) shows our results for the real time correlator
for � ¼ 1 (electron-doped dots) and N ¼ 700. The case

�c ¼ 3 corresponds to conditions (4). The first minimum
of C2ðtÞ in Fig. 5(a) is due to dephasing effects. Note that it
is not destroyed by Overhauser field fluctuations, unlike
the case with � ¼ 0:2. At longer times, C2ðtÞ qualitatively
follows the Overhauser field correlation pattern; i.e., it
decays to a small but nonzero value during a time
�1=�c, followed by a long relaxation tail. Figure 5(b)
shows that a specific feature of the regime (4), which
distinguishes it from the case with �c < �k, is the appear-
ance of a shoulder in the low frequency peak of the spin
noise. An additional feature of the power spectrum at �>1
is the presence of a second broad small amplitude Gaussian
peak at high frequencies.
In conclusion, we identified three regimes with distinct

central spin dynamics in the presence of QC at low tem-
peratures and weak external fields: (i) the regime of expo-
nential relaxation of the spin correlator, which is defined by
Eq. (3); (ii) the regime with the central spin following
Overhauser field adiabatically, which is defined by Eq. (4);
and (iii) the regime of weak QC, 0<�c < �k, which is

qualitatively similar to �c ¼ 0. We showed that hole-doped
InGaAs dots [10] likely correspond to the exponential re-
laxation regime and that electron-doped dots correspond to
regime (ii). Regime (iii) is potentially applicable to electro-
statically defined dots with a nearly perfect atomic lattice.
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