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We present a generally applicable parameter-free first-principles method to determine electronic spin

relaxation times and apply it to the technologically important group-IV materials silicon, diamond, and

graphite. We concentrate on the Elliott-Yafet mechanism, where spin relaxation is induced by momentum

scattering off phonons and impurities. In silicon, we find a �T�3 temperature dependence of the phonon-

limited spin relaxation time T1 and a value of 4.3 ns at room temperature, in agreement with experiments.

For the phonon-dominated regime in diamond and graphite, we predict a stronger �T�5 and �T�4:5

dependence that limits T1 (300 K) to 180 and 5.8 ns, respectively. A key aspect of this Letter is that the

parameter-free nature of our approach provides a method to study the effect of any type of impurity or

defect on spin transport. Furthermore we find that the spin-mix amplitude in silicon does not follow the

E�2
g band gap dependence usually assigned to III-V semiconductors but follows a much weaker and

opposite E0:67
g dependence. This dependence should be taken into account when constructing silicon spin

transport models.
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The physical roadblocks looming in the charge-based
semiconductor device technology require paradigm-
shifting approaches to create new logic devices capable
of lower power consumption and higher performance. This
has motivated a search for new alternative logic variables,
among which the spin of electrons is a natural candidate,
which needs to be efficiently and reliably injected, trans-
ported, and detected. Although extensive studies have
been done in direct-gap materials, the understanding of
spin-transport and spin-life time dependence in the tech-
nologically relevant group-IV materials is surprisingly in-
complete. Silicon and the carbon polytypes diamond and
graphite are particularly relevant because long spin relaxa-
tion times can be expected in materials with inversion
symmetry and low atomic number Z. For those, the main
spin-relaxation mechanism at high temperatures is the
Elliott-Yafet (EY) mechanism mediated through spin-orbit
coupling [1,2], which scales as Z2.

Silicon, an attractive potential spintronics material
due to its compatibility with current technologies,
has a relatively large spin orbit-coupling (44 meV)
[3]. Nevertheless, Lepine’s electron spin resonance mea-
surements [4,5], recently confirmed for low temperatures
by Appelbaum et al. [6,7], found for its spin relaxation
time T1 a value of 7 ns at room temperature, which puts it
well within the usable range. The experimental situation is
less clear for carbon, whose lower Z number promises
longer spin relaxation times. Diamond with a spin-orbit
coupling of 13 meV [8] is especially expected to have a
long electronic spin relaxation time, which, however, has
never been measured. For graphite, the most recent experi-
mental data from 1961 [9,10] suggest a large range for T1

between 1 and 300 ns. For both diamond and graphite, no
reliable theoretical predictions have been reported. Finally,

the E�2
g dependence of the spin-mix amplitude found for

III–V semiconductors [11] is frequently assumed to be
transferable to other systems such as elemental semicon-
ductors [12], whereas proof for that or a rigorous calcu-
lation of the actual dependence is still lacking. All this
makes truly predictive theoretical methods highly desir-
able to quantify the achievable spin relaxation times for
delocalized electrons in group-IV materials.
In this Letter, we present such a method, which is able to

calculate spin relaxation times fully from first principles
without adjustable parameters and without restrictions
concerning the nature of the band gap. This method rep-
resents a new reliable and unbiased way to calculate spin
relaxation times where eigenstates and phonon dispersions
are calculated self-consistently and especially adds to the
previously existing body of work the capability of calcu-
lating parameter-free the effect of arbitrary impurities or
defects on spin transport.
We focus on the EY mechanism, which dominates the

technologically relevant temperature range above 100 K
[5]. In the EY mechanism, spin relaxation is induced by
momentum scattering off impurities or phonons. Within
the Born approximation, the EY spin relaxation time can
be related to the momentum relaxation time (which is
proportional to the carrier mobility) [13]. The underlying
theory to connect them exists on a phenomenological level
for III–V semiconductors with direct gap [14,15], but not
within a first-principles framework that includes indirect
band-gap semiconductors [11].
Since a methodology based on density functional theory

(DFT) to calculate electron mobilities (and thus momen-
tum relaxation times) has been recently developed by
one of us [16], what is left to show here is establishing
the relationship between the spin-flip and momentum
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scattering matrix elements. Other than most previous work,
we do not employ a semiempirical k � p representation of
the band structure to model the effect of spin-orbit cou-
pling on the electronic wave functions [17], but rather use
the spin-dependent DFT wave functions directly.

In the presence of spin orbit coupling, Bloch states are
given by a mixture of spin-up and spin-down states [1],

�kn*ðrÞ ¼ ½aknðrÞj "i þ bknðrÞj #i�eik�r;
�kn+ðrÞ ¼ ½a��knðrÞj #i � b��knðrÞj "i�eik�r;

(1)

with lattice momentumk, band index n, and effective spins
or pseudospins * and + . Using Eq. (1) for potentials that
are slowly varying in space on the scale of the unit cell
[14,15], the relationship between the spin-flip matrix ele-
ments and the momentum matrix elements becomes

h�kn*jVij�k0n0+i ¼
X

G

f�a�k;nðGÞb��k0;n0 ðGÞ

þ b�k;nðGÞa��k0;n0 ðGÞgh�kn*jVij�k0n0*i;
(2)

with ak;nðGÞ and bk;nðGÞ being the Fourier transforms of

ak;nðrÞ and bk;nðrÞ from Eq. (1). Vi is a scattering operator

which can refer here to either electron-phonon (i.e., lattice)
or impurity scattering. Explicit expressions for these two
types of scattering mechanisms will be given below. We
assume there is no spin imbalance between up and down
electrons. The momentum relaxation times can be calcu-
lated using DFT and density functional perturbation theory
(DFPT) [18] as shown in Ref. [16]. The aknðGÞ and bknðGÞ
coefficients are obtained from a DFT calculation that in-
cludes spin-orbit coupling.

The average spin relaxation time T1 is given by [2,3]

hT1i ¼
P

n

RkF
0 ½T1ðk; nÞ @f@" j"¼"Fd

3k�
P

n

RkF
0 ½@f@" j"¼"Fd

3k� ; (3)

where " ¼ "k;n are the energy bands, "F the Fermi energy,

and fð"k;nÞ the Fermi function. For phonon scattering,

T1ðk; nÞ is given by [2]

1

T1ðk; nÞ ¼
4�

@

X

q�n0
jgq�

kþqn0*;kn+j2

� f½fð"kþq;n0 Þ þ nq���ð"k;n � "kþq;n0 þ @!q�Þ
þ ½1þ nq� � fð"kþq;n0 Þ�
��ð"k;n � "kþq;n0 � @!q�Þg; (4)

with phonon energies !q� and Bose-Einstein occupation

factors nq�. The temperature dependence of T1 is given by

the latter function and the Fermi functions. q and � are the
phonon wave vector and polarization. The spin-flip
electron-phonon coupling function g is given by [19]

jgq�
kþqn0*;kn+j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ð2M!q�Þ

q

�
�
�kþqn0*

��������
dVe�p

duq�
� "q�

���������kn+
�
; (5)

with atom mass M, phonon polarization vectors "q� and

atom displacements uq� from their equilibrium positions.

The electron-phonon interaction potential Ve�p is given by

Eq. 19.1 of Ref. [2]

Ve-pðr;p;�;Rþuq�Þ¼Vðr;Rþuq�Þ
þ @

4m2c2
rrVðr;Rþuq�Þ�p ��;

(6)

where the first term is the screened one-electron potential
V that depends on the electronic position r, equilibrium
atomic position R and displacement uq�. The second term

is the spin-orbit potential (VSO). p is the electron momen-
tum and � are the spin Pauli matrices. Force constants and
phonon frequencies are computed from first principles
using DFPT [18].
The inverse spin relaxation time for a density nd of

defects or impurities is given by

1

T1ðk; nÞ ¼
4�nd
@

X

n0

V

ð2�Þ3

�
Z

d3k0jMnn0 ðk *;k0 +Þj2�ð"n0 ðk0Þ � "nðkÞÞ;
(7)

where V is the volume of the supercell. Within the Born
approximation the spin-flip scattering matrix element is
given by Mnn0 ðk *;k0 +Þ ¼ hnk * j�Vjn0k0 +i, where the
self-consistent scattering potential �V is the difference
between the potentials of a system with a defect or impu-
rity and a reference ‘‘unperturbed’’ system. Electronic
screening and computational issues due to the use of super-
cells have been addressed as in Ref. [16]. All necessary
DFT and DFPT calculations were performed within the
local density approximation in QUANTUM-ESPRESSO [20],
using norm-conserving pseudopotentials that explicitly
include spin-orbit coupling [21,22]. We have used
40� 40� 40 and 48� 48� 48 k-point meshes for silicon
and diamond, respectively, and 48� 48� 16 for graphite,
which was the maximum possible with our computational
setup. Convergence was checked by using lower meshes.
We find that for silicon the convergence error is less than
1%, for diamond 5%, and for graphite 10%.
Since the spin-orbit coupling enters the equations

directly through the wave functions and not through a
combination of band-gap and spin-orbit splitting parame-
ters, it is a priori unclear to what extent the known local
density approximation (LDA) band-gap problem is a prob-
lem for the accuracy of our parameter-free method (LDA
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predicts band gaps significantly smaller than experiment
[23]). Our results show that, for the cases where we can
compare to experiments, even having a smaller LDA band
gap leads to good agreement with experimental data. By
applying pressure we are able to theoretically modify the
direct and indirect band gaps in silicon. The ab initio
pressure coefficients thus obtained (dEg=dP ¼ �1:5 and

0:3 meV=kbar for indirect and direct band gaps, respec-
tively) are in very good agreement with experiments [24].
Artificially changing the band gap by varying the lattice
strain led to a slow dependence (E0:67

g ) of the spin-flip

amplitude as a function of absolute gap in silicon. This
result gives the opposite trend and its dependence is much
weaker than the predicted scaling of E�2

g given by pertur-

bation theory applied to direct band-gap semiconductors
[11], which in the literature has been assumed to be correct
for Si as, e.g., stated in Ref. [12]. In contrast, we found, in
the case of diamond, a dependence of E�2:25

g . The opposite

trend of band gap as a function of pressure in the case of
diamond is related to the absence of d states with the same
quantum number as the low lying s and p orbitals in carbon
[25]. In silicon, the d states mix with the s and p states thus
lowering the energy of the conduction band near the X
point. With increased pressure, these mixed states go down
in energy and thus give a negative pressure coefficient.
This mixing does not happen in diamond. As a result, the
pressure coefficient near the bottom of the conduction band
is positive.

A calculation of T1 for silicon due to phonon scattering
using empirical pseudopotential and bond charge models
has been reported recently by Cheng et al. [12]. Cheng’s
results agree very well with experiments. Additionally, two
very recent papers [26,27] used analytical models to de-
scribe the symmetry of the electron spin-phonon interac-
tions in silicon in detail. In contrast to that, the use of fully
first-principles DFT and DFPT here allows truly predictive
parameter-free calculations and additionally enables cal-
culation of impurity scattering effects, for which no pre-
vious work exists.

Silicon.—Our results for the separate contributions to the
spin relaxation time from acoustic and optical phonon
scattering are shown in Fig. 1(a). Acoustic scattering is
the most relevant phonon scattering mechanism throughout
most of the temperature range. In contrast to previous
suggestions [2], we, however, find that optical scattering
starts to become competitive near room temperature. A
T�3:5 temperature dependence is found for phonon scatter-
ing. We find that the inclusion of the spin-orbit term (Yafet
term) in the electron-phonon coupling function [second
term in Eq. (6)] is crucial for obtaining the right tempera-
ture dependence as was first pointed out by Yafet [2].
Indeed, the cancellation of the zero and first order terms
between the gradient of the electrostatic potential and the
gradient of the spin-orbit potential leads to a higher T1 and
much stronger temperature dependence. Without the Yafet

term [black curve in Fig. 1(a)], T1 follows a T
�0:35 depen-

dence which leads T1 to be �3500 times smaller at 80 K
and �30 times smaller at room temperature. The calcu-
lated temperature dependence of T�3:5 lies between the
high temperature limit of T�2:5 and low temperature limit
of T�5 calculated by Yafet for acoustic phonons. Also in
Fig. 1(a), we show the results for spin relaxation times for
impurity scattering as a function of temperature for differ-
ent carrier concentrations. Increasing the carrier concen-
tration by adding more donors in the examined range
makes the impurity scattering mechanism become relevant
at temperatures below 150 K, lowering the total spin
relaxation time as expected.
We have used Matthiessen’s rule to add the lattice and

impurity contributions to the total spin relaxation time. In
Fig. 1(b) we compare our results with the electron spin
resonance experiments of Lepine and Appelbaum’s recent
measurements. We find very good agreement in the region
above 150 K, where the EY mechanism is considered to be
dominant. At room temperature the calculated relaxation
time of T1 ¼ 4:3 ns is well in the usable range [12].
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FIG. 1 (color online). (a) Phonon contribution to the electronic
spin relaxation time T1 in Si for all (red squares), acoustic (blue
diamonds), and optical (green squares) phonons with Yafet term,
and all phonons without Yafet term (black circles). Dashed
curves are contributions to T1 from Pþ-impurity scattering at
carrier concentrations of 7:4� 1014 (þ), 7:8� 1015 (�), and
8� 1016 cm�3 (asterisk). (b) Theoretical T1 (lines) for Si com-
pared with experimental values [5] for carrier concentrations of
7:4� 1014 (circles), 7:8� 1015 (squares), and 8� 1016 cm�3

(diamonds) and with [7] (triangles).
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To check if our method would also produce useful
results in the degenerate-doping regime, we also calculated
the room-temperature spin relaxation time for a donor
concentration of 1:8� 1019 cm�3, for which Dash et al.
recently suggested a lower bound for the electronic spin
lifetime of initially 140 ps [28], then 285 ps [29], nearly
two orders of magnitude smaller than Lepine’s results in
the low-doped regime. This indicates the relevance of
impurity scattering in lowering the spin lifetime in the
highly doped regime, which is important to keep depletion
zones reasonably small. We find a value of 180 ps, in the
range of the experimental values. From this comparison, it
seems that the changes in band structure (impurity bands)
and wave functions from degenerate doping [30] play a
lesser role for the value of the spin relaxation time, since
they are not included in our theory. We also find a weak
dependence of the spin-mix amplitude as a function of
band gap.

Graphite.—The metallic character of graphite requires
integration with special attention to the Fermi line that
goes from the K to the H point of the Brillouin zone [31]
and inclusion of a minimum of two bands into the calcu-
lations. We obtain a spin relaxation time of �5:8 ns at
300 K (Fig. 2). This result is at the lower end of the
available experimental data [9,10] which report values
between 1 and 300 ns. We find T1 to be strongly aniso-
tropic. By just considering scattering along the c axis, we
get a much lower T1 of 0.1 ns. We obtain a strong tem-
perature dependence of T�4:5, close to the theoretical low-
temperature limit [2], as expected from the large in-plane
Debye temperature of 2500 K. Without the Yafet term, T1

would be �110 times smaller at room temperature and
follow a linear temperature dependence.

Diamond.—Figure 3 shows the calculated T1 for dia-
mond considering only phonon scattering. As expected,
diamond has a considerably larger T1 than silicon with a
value of 180 ns at room temperature. However, it is sig-
nificantly smaller than the 102–104 s speculated recently

[32] using a formula [33] that in the case of silicon gives
T1 ¼ 1 s at room temperature, eight orders of magnitude
larger than experiment, as had already been cautioned in
Ref. [33]. This formula is based on the Waller theory of
relaxation by modulation of dipole-dipole interactions by
lattice vibrations [34]. This mechanism is very weak and
typically results in spin relaxation times many orders of
magnitude larger than measured experimentally [33]. On
the experimental side, data are available for the dephasing
times for the well-studied nitrogen-vacancy center in dia-
mond (�s to ms) [32,35], but an experimental study of the
spin relaxation of conduction electrons is still lacking. In
order to check if the magnitude of our results is reasonable,
we have performed mobility calculations [36] of conduc-
tion electrons at room temperature obtaining a value of
130 cm2=Vs, which is within the range of recent experi-
mental Hall data [37] (100–660 cm2=Vs). Since T1 for Si
agrees well with experimental data and the electron mo-
bility for Si has been accurately predicted previously [16],
the link between the matrix elements that deliver the
mobility and the spin-relaxation time [Eq. (2)] has been
validated. Based on this chain of benchmarks, we are
confident that the predictions for T1 in diamond and graph-
ite are sensible, and will also be reliable for other materials
where spin relaxation is dominated by the same processes.
As temperature decreases, the T�5 temperature depen-
dence in diamond (expected as in graphite due to the
high Debye temperature of 2200 K) leads to a much
larger T1 than in silicon (� 110 times larger at 150 K).
Accordingly, scattering from acoustic phonons is dominant
throughout the whole temperature range up to room tem-
perature. When we do not include the Yafet term in the
calculation, T1 becomes�2300 times smaller at 300 K and
with almost no temperature dependence (� T�0:07), illus-
trating again the relevance of including this term in the
electron-phonon coupling function. Since the calculated
band gap dependence of the spin-mix amplitude is E�2:25

g
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FIG. 2 (color online). Spin relaxation due to phonon scattering
in graphite. Red squares (black circles) were calculated with
(without) inclusion of the Yafet term.
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electronic spin relaxation time in diamond from all (red squares),
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The black circles show spin lifetimes calculated without the
Yafet term.
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and the LDA band gap is 20% smaller than the experimen-
tal gap, we estimate the true T1 to vary within a factor of
1–1.6 from the reported ab initio values.

In conclusion, a new parameter-free first-principles
method to obtain spin relaxation times for phonon and
impurity scattering has been presented, which is generally
applicable to arbitrary systems. We have benchmarked this
method for the Elliott-Yafet dominated temperature regime
in silicon with very good agreement with experiment for
phonon and impurity scattering and a limit for T1 of 4.3 ns
at room temperature. For silicon, we find a weak (E0:67

g )

dependence of the spin-mix amplitude as a function of
band gap. We predict a stronger T�5 temperature depen-
dence for phonon scattering in diamond with T1 ¼ 180 ns
at room temperature. This value is significantly smaller
than the 102–104 s recently estimated [32] using a formula
[33] that finds equally for Si a value that is eight orders of
magnitude higher than experiment. Although no experi-
mental results exist for T1, electron mobility measurements
support our results. For graphite we find a T�4:5 tempera-
ture dependence with a T1 of 5.8 ns, at the lower end of the
experimental range.
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