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We study transport through a Coulomb blockaded topologically nontrivial superconducting wire (with

Majorana end states) contacted by metallic leads. An exact formula for the current through this interacting

Majorana single-charge transistor is derived in terms of wire spectral functions. A comprehensive picture

follows from three different approaches. We find Coulomb oscillations with universal halving of the finite-

temperature peak conductance under strong blockade conditions, where the valley conductance mainly

comes from elastic cotunneling. The nonlinear conductance exhibits finite-voltage sidebands due to

anomalous tunneling involving Cooper pair splitting.
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Introduction.—Topologically nontrivial insulators and
superconductors exhibit many remarkable nonlocal fea-
tures such as teleportation or non-Abelian statistics [1,2].
For a one-dimensional topological superconductor (TS)
wire, such effects can be traced back to the existence of a
zero-energy Majorana bound state (MBS) localized at each
end [3–7]. When a grounded TS is weakly contacted by a
normal metal, the MBS is expected to produce a character-
istic zero-bias anomaly peak in the tunnel conductance
[8–12]. Very recently, such a feature has been experimen-
tally observed in tunnel spectroscopy using InSb or InAs
nanowires [13–16], where Majorana fermions are theoreti-
cally expected due to the interplay of strong spin-orbit
coupling, Zeeman field, and proximity-induced supercon-
ducting pairing [17–19]. Recent reviews [1,2,6,7,19] have
also summarized alternative MBS proposals. Here we dis-
cuss an interacting variant of previously studied Majorana
wire setups, the floating ‘‘Majorana single-charge transis-
tor’’ (MSCT) schematically shown in Fig. 1. A compre-
hensive picture of its transport properties in the presence of
interactions emerges from our analysis below. Noting that
the experimentally observed peak features could be related
to a disorder-induced spectral peak [20,21], our results
should help to distinguish the Majorana state from alter-
native explanations in future experiments.

Previous works [22–24] have studied electron-electron
interactions in an isolated TS wire and found that
Majoranas still exist under rather general conditions. As
sketched in Fig. 1, we instead study a generalization of the
setup in Ref. [13], where source and drain metallic elec-
trodes contact the TS wire. We stress that the MSCT could
be realized not only with nanowires but using most other
Majorana proposals as well. In such a geometry, Coulomb
blockade effects due to the finite charging energy Ec of the
TS can play a decisive role. For instance, one expects
Coulomb oscillations of the conductance as a function of
a gate voltage parameter ng, with peaks (valleys) near

half-integer (integer) ng, while in the noninteracting

(Ec ¼ 0) limit, the MBSs pinned to zero energy cause
resonant Andreev reflection (AR) [8–11], with
ng-independent linear conductanceG ¼ 2e2=h at tempera-

ture T ¼ 0. Resonant AR also survives for Ec&�¼
�Lþ�R, albeit with reduced conductance [25]. For
Ec � �, the Coulomb blockade is firmly established, and
the peak conductance approaches the (spinless) resonant
tunneling valueG ¼ e2=h, which has been pointed out as a
signature of electron teleportation [26].
In this Letter, we consider Coulomb blockaded charge

transport through the MSCT; for a variant with one super-
conducting and one metallic lead, see Ref. [27]. We
provide an exact expression for the current in this interact-
ing system, and develop three different approximation
schemes to study Coulomb oscillations in the MSCT,
both for T ¼ 0 and finite T. We quantitatively describe
the T ¼ 0 crossover of the peak conductance from G ¼
2e2=h to e2=h as Ec=� increases, which constitutes a
characteristic signature of Majoranas. Remarkably, this
‘‘halving’’ of the peak conductance is universal and found

FIG. 1 (color online). Majorana single-charge transistor
(MSCT): The TS wire with Majorana end states is tunnel
coupled (�L, �R) to normal metal electrodes and Josephson
coupled (EJ) to another bulk superconductor. Capacitive charg-
ing effects are encoded by Ec and can be tuned by a gate voltage
parameter ng / Vg.
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to hold for arbitrary T. For the valley conductance, we find
that elastic cotunneling dominates while AR is subleading.
We predict finite-voltage sidebands in the nonlinear differ-
ential conductance which are directly related to anomalous
tunneling processes where the Majorana state and the
Cooper pair number change simultaneously. The presence
of Majoranas can be unambiguously identified in experi-
ments by the magnetic field dependence of the sideband
location.

Model.—The MSCT Hamiltonian, H ¼ Hc þHt þHl,
contains a piece Hc describing the TS wire, a tunnel
Hamiltonian Ht connecting the TS to the left (j ¼ L) and
right (j ¼ R) electrode, and a term Hl describing the leads
(we often use units with e ¼ @ ¼ kB ¼ 1). Topological
arguments warrant that the TS wire holds a single unpaired
MBS near each end [6,7] described by the Majorana opera-

tor �j¼�y
j with anticommutator f�j;�j0 g¼�jj0 . We intro-

duce the nonlocal fermion operator d¼ð�Lþi�RÞ=
ffiffiffi
2

p
,

such that �L ¼ ðdþ dyÞ= ffiffiffi
2

p
and �R ¼ �iðd� dyÞ= ffiffiffi

2
p

.

With n̂d ¼ dyd and the number operator N̂ for Cooper pairs
in the TS, the instantaneous charge state of the wire is
described by (N, nd), where the integer N and nd ¼ 0, 1

are eigenvalues of N̂ and n̂d, respectively. With the phase �

conjugate to N̂, where ½�; N̂� ¼ i and e�i� (ei�) lowers
(raises) N by one unit, we have

Hc ¼ Ecð2N̂ þ n̂d � ngÞ2 � EJ cosð���SÞ: (1)

The TS wire is assumed sufficiently long to exclude a direct
tunnel coupling between �L and �R. However, note that Ec

introduces a dynamical coupling between the Majoranas.
Proximity-induced pairing correlations are required for
MBS formation, and in Eq. (1) we include Cooper pair
exchange (with Josephson coupling EJ) between the TS
condensate and another bulk superconductor (with fixed
phase �S) [27,28]. We focus on the most interesting case
of a large proximity gap �TS >maxðEc;�; TÞ, where
charge transport involves MBSs and the contribution of
quasi-particles above the gap can be neglected. Next, elec-
trons in lead j correspond to free fermions with chemical
potential �j and (effectively spinless [25]) fermionic

operators cj;k for momentum k. Hl is treated within the

usual wide-band approximation [29] and the bias voltage
is eV ¼ �L ��R. Taking into account charge conserva-
tion and expressing theMajoranas in terms of the nonlocald
fermion, the tunnel Hamiltonian reads [25]

Ht ¼
X

j

�jc
y
j �j þH:c:; �j ¼ 1

ffiffiffi
2

p ðdþ sje
�i�dyÞ; (2)

where cj ¼ P
kcj;k, sL ¼ þ1 and sR ¼ �1, and �L;R de-

notes the respective tunnel matrix elements [11]. Tunneling
from the TS to lead j thus proceeds either by destroying the
d state without changing N (‘‘normal’’ tunneling) or by
occupying the d state and simultaneously splitting a
Cooper pair (‘‘anomalous’’ tunneling), plus the conjugate

processes. Below we use the hybridization scales �j ¼
2�	jj�jj2, where 	j is the density of states in lead j.

Experimentally, the �j (and ng) can be changed via gate

voltages [13].
Exact expression for current.—Using nonequilibrium

Green’s function (GF) techniques [30,31], the current Ij
flowing from lead j to the TS can be expressed in terms of

the Keldysh GF �G�j
ðt;t0Þ¼�ihT C�jðtÞ�jðt0Þi, where T C

denotes Keldysh time ordering and the pseudo-fermion �j

has been defined in Eq. (2). With the Fourier-transformed
retarded, GR

�j
ð
Þ, and Keldysh, GK

�j
ð
Þ, components

of �G�j
, we obtain Ij¼ðe�j=hÞ

R
d
½Fð
��jÞImGR

�j
ð
Þþ

ði=2ÞGK
�j
ð
Þ�, where Fð
Þ¼1�2f¼ tanhð
=2TÞ encodes

the Fermi function fð
Þ in the leads. Next, we note that

GK
�j
ðt; tÞ ¼ 0 as a consequence of �y

j �j ¼ �j�
y
j ¼ 1=2.

Hence, we find the exact result

Ij ¼
e�j

h

Z
d
Fð
��jÞImGR

�j
ð
Þ; (3)

stating that the current can be computed from the spectral
function / ImGR

�j
. The well-known expression for inter-

acting quantum dots [32] has thereby been extended to the
interacting Majorana wire; note that there are two spectral
functions associated with the currents IL and IR. Current
conservation here implies IL þ IR þ IS ¼ 0, with the
supercurrent IS flowing through the interface to the bulk
superconductor. Below we define the conductance G ¼
dI=dV using the symmetrized current I ¼ ðIL � IRÞ=2.
For Ec ¼ 0, the pseudo-fermions �j reduce to Majorana

fermions �j, and the Lorentzian spectral function,

�ImGR
�j
ð
Þ ¼ �j=ð
2 þ �2

j Þ, implies resonant AR with

G ¼ 2e2=h [8–10]. For finite Ec, we shall present several
complementary approximations in order to achieve a broad
physical understanding of the MSCT transport properties.
Equation (3) should also be useful for numerically exact
calculations, e.g., using the numerical or density-matrix
renormalization group.
Equation-of-motion (EOM) approach.—We constructed

an EOM approach for GR
�j

to access the linear conductance

near a peak. Within this method, we introduce the Nambu
spinors�d ¼ ðd; e�i�dyÞT and the corresponding retarded

GF, GR
dd ¼ �i�ðt� t0Þhf�dðtÞ;�y

d ðt0Þgi. The EOM for

GR
dd generates higher-order GFs of the type �R

Nmdd ¼
�i�ðt� t0ÞhfN̂mðtÞ�dðtÞ;�y

d ðt0Þgi, which we truncate at

the level m ¼ 2 and solve in a self-consistent way [33].
The resulting GF GR

dd then yields GR
�j

¼ 1
2 Tr½ð1þ

sj�xÞGR
dd� with Pauli matrix �x. Finally, we obtain the

conductance from Eq. (3). This approximation is valid by
construction for Ec * �, but the imposed self-consistency
[33] allows us to extend it to Ec < �, where the resulting
conductance (being determined by truncated fluctuations)
gives a lower bound for the exact result.
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Zero-bandwidth model (ZBWM).—Next we study the
ZBWM where each lead is represented by just a single
fermion site and only a finite number of TS Cooper pairs
(N <Nmax) is included. The Hilbert space then has the
finite dimension 8Nmax, which allows us to numerically
calculate the spectral density / ImGR

�j
ð
Þ via its Lehmann

representation, with poles phenomenologically broadened
by �. A similar description has been pursued before for
Ec ¼ EJ ¼ 0 [34]. With this spectral function, Eq. (3)
yields the conductance within the ZBWM.

Master equation and cotunneling processes.—ForT>�,
the GF formulation reduces to amaster equation description
including sequential tunneling and cotunneling processes
(for simplicity, EJ ¼ 0 here). The stationary probability
distribution PQ for having Q ¼ 2N þ nd particles on the

TS then obeys
P

Q0�Q½PQ0WQ0!Q � PQWQ!Q0 � ¼ 0. All

nonvanishing transition rates WQ!Q0 are specified in

terms of rates obtained under a systematic second-order
T-matrix expansion in �L;R [35]. With the electrostatic

energy EQ ¼ EcðQ� ngÞ2, sequential tunneling yields

the rate �
ðseqÞ
j;Q!Q�1 ¼ ð�j=2ÞfðEQ�1 � EQ ��jÞ for one

particle tunneling into (out of) the TS from (to) lead

j ¼ L, R. Next, elastic cotunneling transfers a particle
from lead j to the opposite lead �j with virtual excitation
of the TS states Q� 1. The elastic cotunneling rate is

�ðECÞ
j;Q ¼ �L�R

8�

Z
d
fð
��jÞ½1� fð
���jÞ�

�
��������

1


� ðEQþ1 � EQÞ þ i0

� 1


� ðEQ � EQ�1Þ � i0

��������

2

; (4)

where the two terms come from the interference of normal
and anomalous tunneling. We note in passing that for large
�TS, inelastic cotunneling does not contribute at all, while
the conventional elastic cotunneling rate due to quasi-
particle states above the gap (and without MBSs) would be

much smaller,�ðECÞ / �L�R=�TS [30]. To the same order in
�L;R, we also have local (and crossed) AR processes, where

an electron and a hole from the same (different) lead(s) are
combined to form a Cooper pair, Q ! Qþ 2; the reverse
process describes Cooper pair splitting,Q ! Q� 2. Some
algebra yields the AR rates

�ðARÞ
j;j0;Q!Q�2

¼ 1þ �j;�j0

2

�j�j0

8�

Z
d


Z
d
0fð� ð
��jÞÞfð� ð
0 ��j0 ÞÞ�ð
þ 
0 � ðEQ�2 � EQÞÞ

�
��������

1


� ðEQ�1 � EQÞ þ i0
� sjsj0


0 � ðEQ�1 � EQÞ þ i0

��������

2

; (5)

where j ¼ j0 (j � j0) corresponds to local (crossed) AR.
The i0 terms indicate that regularization of the integrals in
Eqs. (4) and (5) is necessary. Application of the general
regularization scheme in Refs. [36,37] then implies that the
principal value of these integrals needs to be taken. Given
these rates and the (numerical) solution PQ of the master
equation, the currents Ij then readily follow.

Coulomb oscillations.—Let us first address the ng de-

pendence of the linear (V ! 0) conductance, see Fig. 2; we
take �L ¼ �R ¼ �=2 in all figures. Both the master equa-
tion (main panel, finite T) and the ZBWM (inset, T ¼ 0)
reveal clear conductance oscillations in the MSCT for
Ec � �, with peaks (valleys) for half-integer (integer)
gate voltage parameter ng. The main panel shows that the

peak (valley) conductance is halved (strongly suppressed)
when going from the noninteracting to the deep Coulomb
blockade limit. For EJ ¼ 0 and ð�; TÞ � Ec, the line shape
of the valley conductance is obtained in closed form,

Gvalleyð�Þ ¼ e2

h

�L�R

E2
c

1

ð1� 4�2Þ2 ; (6)

where � ¼ ng � ½ng� with j�j � 1 is the deviation from a

valley center. Equation (6) comes from elastic cotunneling,
with constructive interference of the normal and anoma-
lous tunneling contributions [see Eq. (4)], while AR is

strongly suppressed in this limit. The inset of Fig. 2 shows
that G increases when the Josephson coupling EJ grows.
One can understand this by noting that for EJ � Ec, one
ultimately reaches the resonant AR limit of a grounded TS,
with the ng-independent T ¼ 0 conductance G ¼ 2e2=h.
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FIG. 2 (color online). Coulomb oscillations in the MSCT.
Main panel: Conductance G vs ng from the master equation

for EJ ¼ 0, T ¼ 2� and several Ec. Inset: Same but from
ZBWM for T ¼ 0, Ec ¼ 5�, and several EJ.
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We find that AR yields significant conductance contribu-
tions for EJ * Ec, which are best detected through the
nonlocal conductance @IL=@�R. However, we will discuss
this quantity in detail elsewhere.

Peak conductance.—Results for the peak conductance
are shown in Fig. 3. For T ¼ 0 (main panel), we obtain
the full crossover from G ¼ 2e2=h to G ¼ e2=h as Ec=�
increases. The known small-Ec behavior [25] is nicely
reproduced by the ZBWM calculation. In the opposite
large-Ec limit, the EOM method is very accurate and
Fig. 3 suggests that the simple ZBWM already captures
the crossover from resonant AR [8–10] to electron tele-
portation [26] surprisingly well. The inset of Fig. 3 again
demonstrates the universal halving of the finite-T peak
conductance; see also Fig. 2. Since experiments so far
were conducted in the high-temperature regime T > �
[13], let us now specify the line shape near a conductance
peak for Ec��. Using � ¼ ng � ½ng� � 1=2with j�j�1

for the deviation from a peak center, truncation of the
master equation to two charge states gives

Gpeakð�Þ ¼ e2

h

��

16T

1

cosh2ð�Ec=TÞ
: (7)

We stress that the peak conductance [Gpeakð� ¼ 0Þ] is in-
deed halved compared to Ec ¼ 0 [8]. Moreover, it exhibits
both a thermal and an interaction-induced reduction.

Finite-voltage sidebands.—Next we discuss the differ-
ential conductance at finite bias voltage V. Master equation
results for T ¼ 2� are shown in Fig. 4. Starting with the
main panel, we find sideband peaks when eV is equal to an

integer multiple of 4Ec. For these voltages, the chemical
potentials �L;R are resonant with two (almost) degenerate

higher-order charge states, implying additional sequential
tunneling contributions beyond the resonant transition de-
termining the linear conductance peak [Eq. (7)]. Note that
the fluctuations in N needed to reach higher-order charge
states can only be achieved through anomalous tunneling
processes [see Eq. (2)]. Similar sideband peaks are also
found for other ng; the integer-ng valley case is shown in

the inset of Fig. 4. In Fig. 5 we show the evolution of the
sideband peaks as EJ is changed, determined from the
ZBWM at T ¼ 0. For half-integer ng, the sideband peak

position observed in the main panel of Fig. 5 is well

described by eV ’ 4Ec

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðEJ=2EcÞ2

p
, which comes

from Josephson coupling between the two relevant charge
states. Since EJ can be tuned by applying a small magnetic
field parallel to the junction between the TS and the
bulk superconductor, an experimental observation of
the sideband peak and its shift with magnetic field
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FIG. 3 (color online). Peak conductance G vs Ec=� on a semi-
logarithmic scale. Main panel: Comparison of T ¼ 0 results
using perturbation theory in Ec=� [25] (blue solid curve), the
EOM approach (red dotted-solid curve), and the ZBWM (black
dashed curve). The shown EOM results are quantitatively valid
only for Ec * � (solid part) but give a lower bound when Ec&�
(dotted part). Here, EJ ¼ 0 since G only weakly depends on EJ

for EJ & Ec. Inset: Same but from the master equation for
several temperatures T > �.
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[cf. the expression for the peak position above] would
provide clear evidence for the anomalous tunneling mecha-
nism, and thereby for the presence of MBSs.

Conclusions.—In this Letter, we have studied the trans-
port properties of an interacting Majorana single-charge
transistor. Our results should be directly relevant for ex-
periments extending existing work, see, e.g., Ref. [13],
where conductance peaks for tunneling into Majorana
wires were reported. When a gate voltage parameter ng is

varied, we find Coulomb oscillations, where the behavior
of the peak and valley conductance has been characterized
in detail. The Majorana fermions in this system could be
identified by observing sideband peaks in the nonlinear
conductance and from the crossover behavior of the
Coulomb peak conductance.

This work was supported by the DFG (Grant No. EG-96/
9-1 and SFB TR 12), by the EU network SE2ND, and by
the Spanish MICINN under Contract FIS2008-04209.

Note added.—After submission of this work, we learned
of an unpublished study of the MSCT model by Fu and
Kane [38].

[1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

[2] X. L. Qi and S. C. Zhang, Rev. Mod. Phys. 83, 1057
(2011).

[3] A. Yu. Kitaev, Phys. Usp. 44, 131 (2001).
[4] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
[5] M. Sato and S. Fujimoto, Phys. Rev. B 79, 094504 (2009).
[6] C.W. J. Beenakker, arXiv:1112.1950.
[7] M. Leijnse and K. Flensberg, arXiv:1206.1736.
[8] C. J. Bolech and E. Demler, Phys. Rev. Lett. 98, 237002

(2007).
[9] J. Nilsson, A. R. Akhmerov, and C.W. J. Beenakker, Phys.

Rev. Lett. 101, 120403 (2008).
[10] K. T. Law, P. A. Lee, and T. K. Ng, Phys. Rev. Lett. 103,

237001 (2009).
[11] K. Flensberg, Phys. Rev. B 82, 180516(R) (2010).
[12] M. Wimmer, A. R. Akhmerov, J. P. Dahlhaus, and C.W. J.

Beenakker, New J. Phys. 13, 053016 (2011).
[13] V. Mourik, K. Zuo, S.M. Frolov, S. R. Plissard, E. P.A.M.

Bakkers, and L. P. Kouwenhoven, Science 336, 1003 (2012).
[14] L. Rokhinson, X. Liu, and J. Furdyna, arXiv:1204.4212.
[15] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H.

Shtrikman, arXiv:1205.7073.

[16] M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff,
and H.Q. Xu, arXiv:1204.4130.

[17] R.M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev.
Lett. 105, 077001 (2010).

[18] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett.
105, 177002 (2010).

[19] J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).
[20] D. Bagrets and A. Altland, arXiv:1206.0434.
[21] J. Liu, A. C. Potter, K. T. Law, and P. A. Lee,

arXiv:1206.1276.
[22] S. Gangadharaiah, B. Braunecker, P. Simon, and D. Loss,

Phys. Rev. Lett. 107, 036801 (2011).
[23] E.M. Stoudenmire, J. Alicea, O.A. Starykh, and M. P. A.

Fisher, Phys. Rev. B 84, 014503 (2011).
[24] E. Sela, A. Altland, and A. Rosch, Phys. Rev. B 84,

085114 (2011).
[25] A. Zazunov, A. L. Yeyati, and R. Egger, Phys. Rev. B 84,

165440 (2011).
[26] L. Fu, Phys. Rev. Lett. 104, 056402 (2010).
[27] N. Didier, M. Gibertini, A. G. Moghaddam, J. König, and

R. Fazio, arXiv:1202.6357.
[28] A. Zazunov and R. Egger, Phys. Rev. B 85, 104514 (2012).
[29] It is straightforward to go beyond this approximation by

allowing for energy-dependent �jð
Þ in the equations
below.

[30] Yu. V. Nazarov and Ya.M. Blanter, Quantum Transport
(Cambridge University Press, Cambridge, England, 2009).

[31] A. Altland and B. Simons, Condensed Matter Field
Theory (Cambridge University Press, Cambridge,
England, 2010), 2nd ed.; G. Dolcetto, S. Barbarino, D.
Ferraro, N. Magnoli, and M. Sassetti, Phys. Rev. B 85,
195138 (2012); M. Grifoni, M. Sassetti, and U. Weiss,
Phys. Rev. E 53, R2033 (1996).

[32] Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512
(1992).

[33] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.109.166403 for a brief
summary of our EOM approach.

[34] S. Tewari, C. Zhang, S. Das Sarma, C. Nayak, and D.H.
Lee, Phys. Rev. Lett. 100, 027001 (2008).

[35] We find WQ!Q�1 ¼
P

j�
ðseqÞ
j;Q!Q�1, and WQ!Q�2 ¼

�ðARÞ
LR;Q!Q�2 þ

P
j�

ðARÞ
jj;Q!Q�2. Additional rates (not speci-

fied here) involving Cooper pair transfer between the TS
and the bulk superconductor are included for finite EJ.

[36] M. Turek and K.A. Matveev, Phys. Rev. B 65, 115332
(2002).

[37] J. Koch, F. von Oppen, Y. Oreg, and E. Sela, Phys. Rev. B
70, 195107 (2004).

[38] L. Fu and C. L. Kane (unpublished).

PRL 109, 166403 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

19 OCTOBER 2012

166403-5

http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1103/PhysRevB.79.094504
http://arXiv.org/abs/1112.1950
http://arXiv.org/abs/1206.1736
http://dx.doi.org/10.1103/PhysRevLett.98.237002
http://dx.doi.org/10.1103/PhysRevLett.98.237002
http://dx.doi.org/10.1103/PhysRevLett.101.120403
http://dx.doi.org/10.1103/PhysRevLett.101.120403
http://dx.doi.org/10.1103/PhysRevLett.103.237001
http://dx.doi.org/10.1103/PhysRevLett.103.237001
http://dx.doi.org/10.1103/PhysRevB.82.180516
http://dx.doi.org/10.1088/1367-2630/13/5/053016
http://dx.doi.org/10.1126/science.1222360
http://arXiv.org/abs/1204.4212
http://arXiv.org/abs/1205.7073
http://arXiv.org/abs/1204.4130
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1088/0034-4885/75/7/076501
http://arXiv.org/abs/1206.0434
http://arXiv.org/abs/1206.1276
http://dx.doi.org/10.1103/PhysRevLett.107.036801
http://dx.doi.org/10.1103/PhysRevB.84.014503
http://dx.doi.org/10.1103/PhysRevB.84.085114
http://dx.doi.org/10.1103/PhysRevB.84.085114
http://dx.doi.org/10.1103/PhysRevB.84.165440
http://dx.doi.org/10.1103/PhysRevB.84.165440
http://dx.doi.org/10.1103/PhysRevLett.104.056402
http://arXiv.org/abs/1202.6357
http://dx.doi.org/10.1103/PhysRevB.85.104514
http://dx.doi.org/10.1103/PhysRevB.85.195138
http://dx.doi.org/10.1103/PhysRevB.85.195138
http://dx.doi.org/10.1103/PhysRevE.53.R2033
http://dx.doi.org/10.1103/PhysRevLett.68.2512
http://dx.doi.org/10.1103/PhysRevLett.68.2512
http://link.aps.org/supplemental/10.1103/PhysRevLett.109.166403
http://link.aps.org/supplemental/10.1103/PhysRevLett.109.166403
http://dx.doi.org/10.1103/PhysRevLett.100.027001
http://dx.doi.org/10.1103/PhysRevB.65.115332
http://dx.doi.org/10.1103/PhysRevB.65.115332
http://dx.doi.org/10.1103/PhysRevB.70.195107
http://dx.doi.org/10.1103/PhysRevB.70.195107

