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We here demonstrate that the superfluid 3He-B under a magnetic field in a particular direction stays

topological due to a discrete symmetry, that is, in a symmetry protected topological order. Because of the

symmetry protected topological order, helical surface Majorana fermions in the B phase remain gapless

and their Ising spin character persists. We unveil that the competition between the Zeeman magnetic field

and dipole interaction involves an anomalous quantum phase transition in which a topological phase

transition takes place together with spontaneous symmetry breaking. Based on the quasiclassical theory,

we illustrate that the phase transition is accompanied by anisotropic quantum criticality of spin

susceptibilities on the surface, which is detectable in NMR experiments.
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Introduction.—Superfluid 3He-B is one of the most con-
crete examples of time-reversal invariant topological
superfluids [1,2], where the ground state wave function
supports a nontrivial bulk topological invariant in three
spatial dimensions [3–8]. As a consequence of the bulk-
edge correspondence, helical Majorana fermions live on its
specular surface, and their self-conjugate property gives
rise to an Ising-like anisotropy of spin susceptibility
[9–16]. Recently, the surface of a Majorana cone has
been detected in experiments [17].

Since the topological superfluidity in 3He-B, which is
categorized as class DIII [3], is ensured by time-reversal
invariance, it is sometimes stated that any time-reversal
breaking such as a finite magnetic field immediately wipes
out the topological nature. Indeed, in the presence of a
strong magnetic field, the Majorana Ising spin ceases to
exist [18]. However, as argued in the Letter, a more careful
consideration on the basis of microscopic calculations and
symmetry of the system points to a different conclusion. It
is worth mentioning that the robustness of a topological
phase transition for a topological insulator against the
time-reversal breaking is proposed in an extended Kane-
Mele model [19].

In this Letter, we show that 3He-B under a magnetic field
in a particular direction stays topological as a symmetry
protected topological order. In spite of the time-reversal
breaking due to the magnetic field, the topological property
is retained by a hidden Z2 symmetry that is obtained by a
combination of time reversal and an SOð3ÞLþS rotation.
Because this Z2 symmetry restores a chiral symmetry of
the microscopic Hamiltonian, helical surface Majorana
fermions in the B phase remain to be gapless, and the
Ising spin character of the Majorana fermions persists
unless the discrete symmetry is spontaneously broken.
Finally, we come to the conclusion that at a critical
Zeeman field H� the system undergoes anomalous quan-
tum phase transition in the sense that topological phase

transition takes place together with spontaneous breaking
of the Z2 symmetry [Fig. 1(a)].
The phase transition is described by a pair of an order

parameter ‘̂z and a topological number w, which are
defined in Fig. 1(b) and in the text below Eq. (4).
Conventionally, topological phase transitions are accom-
panied by creation or destruction of gapless surface states
and gap closing of bulk quasiparticle spectra. While the
anomalous quantum phase transition in the above involves
the destruction of gapless surface states, it does not show
the bulk gap closing. Instead, there appears a long range
order due to symmetry breaking. Moreover, it takes place
between two conceptional different quantum orders: At a
critical magnetic field, the system undergoes a transition
from a topologically ordered state (w � 0) to a conven-

tionally ordered one (‘̂z � 0).
The symmetry protected topological order is closely

associated with the order parameter manifold of 3He-B.
Ignoring the dipole interaction and a Zeeman field,
the bulk 3He-B spontaneously reduces the symmetry
SOð3ÞL � SOð3ÞS � Uð1Þ to SOð3ÞLþS [20]. The gap func-

tion is �ðk̂; rÞ ¼ i� � dðk̂; rÞ�y, where d� ¼ d��k̂� and,

d��ðrÞ ¼ ei#R��ðn̂; ’Þ��ðrÞ: (1)

(b)(a)

FIG. 1 (color online). (a) Schematic phase diagram of 3He-B
under a parallel magnetic field, where H� involves the topologi-
cal phase transition with spontaneous symmetry breaking.
(b) Relation between ‘̂z and the orientation of dð0; 0; k̂zÞ for an
arbitrary (n̂, ’) at the surface.
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The broken symmetry SOð3ÞL�S, the relative rotation be-
tween spin and orbital spaces, is described by R��ðn̂; ’Þ
with the rotation axis n̂ and the angle ’. Here the repeated
Greek indices imply the sum (�, �, � ¼ x, y, z) and ��

denotes the Pauli matrices in the spin space. In general, the
dipole interaction acting as a small perturbation chooses a
particular state of (n̂, ’).

To quantitatively determine ‘̂zðn̂; ’Þ and H�, we here
utilize the quasiclassical theory which takes account of
dipole interaction and Zeeman energy on equal footing.
In a slab geometry, the finite H� results from the competi-
tion between dipole and magnetic energies, where the
former (latter) favors the symmetry protected topological
(a nontopological) order. It is found that since the topo-
logical order protects the Majorana Ising spins, the phase
transition is accompanied by anomalous critical behaviors
of spin susceptibilities on the surface.

Surface bound states.—Let us start with the mean-field
Hamiltonian density in the Nambu representation,

H ðr1; r2Þ ¼ �ðr1; r2Þ �ðr1; r2Þ
���ðr1; r2Þ ���ðr1; r2Þ

� �
þ VZ�ðr12Þ:

(2)

In this Letter, we set @ ¼ kB ¼ 1. Equation (2) consists
of �ðr1; r2Þ ¼ �ðr12Þð�r2=2M� EFÞ and the Zeeman
energy VZ � ��nH�diagð��;���

�Þ, where M, EF ¼
k2F=2M, and �n are the mass, Fermi energy, and magnetic
moment of 3He atoms. The pair potential for 3He-B,
�ðk; rÞ � R

dr12e
�ik�r12�ðr1; r2Þ with Eq. (1), is simplified

to �ðk; rÞ ¼ Uðn̂; ’Þ�0ðk; rÞUTðn̂; ’Þ with Uðn̂; ’Þ 2
SUð2Þ and �0ðk; rÞ ¼ i���y��ðrÞk̂�.

We first diagonalize Eq. (2) as
R
dr2H ðr1; r2Þ’Eðr2Þ ¼

E’Eðr1Þ, that is, the Bogoliubov–de Gennes (BdG) equa-
tion, where E and ’E describe the energy and wave func-
tion of quasiparticles. This is solved within the Andreev
approximation r2 ! iv F � r and the uniform pair poten-

tial ��ðrÞ ¼ �0, where vF ¼ k̂vF is the Fermi velocity.

In this work, we consider the B-phase sandwiched by two
specular walls which are normal to the ẑ-axis. For
H ¼ 0, the dispersion of the surface Andreev bound

state (SABS) is given by E0ðkkÞ ¼ � �0

kF
jkkj with kk

being the momentum in the xy plane [8,10,11]. The corre-

sponding wave functions are expressed as ’ ð�Þ
0;kk ðrÞ /

eikk�rke�z=� sinð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F � k2k

q
zÞUðn̂; ’Þ�ð�Þ

k , where (� )

correspond to the positive and negative energy states

and we set U � diagðU;U�Þ. We also introduce �ðþÞ
k ¼

�x�
ð�Þ�
kk � ð1;�iei	k ;�ei	k ;�iÞT with 	k ¼ tan�1

ðk̂y=k̂xÞ and �� being the Pauli matrices in the Nambu

space.
For a finite H, the dispersion of the SABS is obtained

from the linear combination, ’kk ¼ aþ’
ðþÞ
0;kk

þ a�’
ð�Þ
0;kk

, as

EðkkÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½E0ðkkÞ�2 þ ½�nH‘̂zðn̂; ’Þ�2

q
; (3)

where ‘̂�ðn̂; ’Þ � ĥ�R��ðn̂; ’Þ with ĥ� ¼ H�=H.

Symmetry protected topological phase.—As we showed

in Eq. (3), if ‘̂z ¼ 0, the SABS remains gapless even in the
presence of a magnetic field. From a topological point of
view, however, this seems to be a puzzle: Because the
magnetic field breaks the time-reversal invariance, topo-
logical protection as a time-reversal invariant topological
superfluids does not work any more. Nevertheless, no gap

opens in the SABS if the magnetic field satisfies ‘̂z ¼ 0.

First, one should notice that ‘̂ itself could be affected by
a Zeeman magnetic field. Therefore, an immediate solution
for this puzzle might be that if one applies a magnetic field,

‘̂ changes so as ‘̂z � 0. However, as is shown below, if the
Zeeman field is parallel to the xy plane (say, along x̂),
this is not the case: There exists a symmetry that ensures

‘̂z ¼ 0. Interestingly, we find that this symmetry resolves
the puzzle above at the same time, by providing another
topological protection of the SABS.
Let us first consider symmetry of the system. Among

SOð3ÞLþS rotations under which microscopic interactions
of 3He atoms are invariant, the slab geometry considered
here preserves its subgroup SOð2ÞLþS rotation Uð
Þ in the
xy plane. The point is that while the Zeeman term along x̂
explicitly breaks both the time-reversal symmetry and the
SOð2ÞLþS rotation symmetry above, it does not break a
combination of them. In fact, in this case, the flipped
magnetic field by time-reversal T is recovered by the �
rotation in the xy plane. Therefore, the microscopic
Hamiltonian of 3He atoms is invariant under the discrete

symmetry given by TUð�Þ. We notice here that ‘̂z men-

tioned above is transformed nontrivially as ‘̂z ! �‘̂z
under this symmetry. Therefore, ‘̂z is an order parameter
of the discrete symmetry, and it should be zero unless the
discrete symmetry is spontaneously broken.
Remarkably, one can introduce a topological invariant if

the discrete symmetry is not spontaneously broken. In that
case, the BdG Hamiltonian (2) in the momentum space is
manifestly invariant under the discrete symmetry,
H ðkx;ky;�kzÞ¼TUð�ÞH ðkx;ky;kzÞU�1ð�ÞT �1, where

T ¼ i�yK is time reversal with complex conjugate

operator K and Uð�Þ ¼ i�z�z is the � rotation.
Therefore, combining it with the particle-hole symmetry
of the BdG Hamiltonian, CH ðkÞCy ¼ �H �ð�kÞ with
C ¼ �xK, one obtains the relation �H ðkx;ky;kzÞ��1¼
�H ð�kx;�ky;kzÞ with � ¼ �x�y. On the kz axis, this

reduces to the so-called chiral symmetry

f�;H ð0; 0; kzÞg ¼ 0: (4)

Thus, following Refs. [21,22], one can introduce the
following one-dimensional (1D) winding number w ¼
� 1

4�i

R1
�1 dkztr½�H�1@kzH �jkk¼0, which are evaluated
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as w ¼ 2 for �nH < EF (�? > 0). Therefore, the system
is topologically nontrivial, and the bulk-edge correspon-
dence implies that the SABS satisfies EðkkÞ ¼ 0 at kk ¼ 0
even in the presence of the magnetic field. It should be
noted here that one needs the discrete symmetry specific to
this system in order to define w. Therefore, a topological
phase realized here is a symmetry protected topological
order [23,24].

Majorana Ising spin.—In the absence of the magnetic
field, it has been known that helical Majorana fermions in
3He-B have Ising-like spin density [9–16]. Now we show
that the symmetry protected topological order discussed
above retains the Ising spin character of Majorana
fermions.

To show this, we use a general symmetry property of the
SABS. Let us consider the low energy limit where only
the zero energy SABSs at kk ¼ 0 contribute. According to

the index theorem of Ref. [22], Eq. (4) infers that the zero
energy SABSs are eigenstates of �, and the relation w ¼
n� � nþ holds on the surface of superfluid 3He-B, where
n� is the number of the zero energy SABSs with the
eigenvalue � ¼ �1. In the present case, w ¼ n� ¼ 2 and

nþ ¼ 0, and thus the SABS ’ðaÞ
kk¼0 satisfies �’ðaÞ

kk¼0 ¼
�’ðaÞ

kk¼0 (a ¼ 1, 2). Using the particle-hole symmetry, one

can also place the relation �x’
ðaÞ�
kk¼0 ¼ ’ðaÞ

kk¼0 at the same

time. From these two relations,’ðaÞ
kk¼0 has a generic form as

’ðaÞ
kk¼0 ¼ ½�ðaÞ; i�ðaÞ�; �ðaÞ�;�i�ðaÞ�T with a function �ðaÞ.

Ignoring nonzero energy modes, the quantized field � ¼
½ĉ "; ĉ #; ĉ

y
" ; ĉ

y
# �T is expanded as�ðzÞ ¼ P

a¼1;2’
ðaÞ
kk¼0�

ðaÞ

with real �ðaÞ, and from the general form of ’ðaÞ
kk¼0, one

obtains iĉ " ¼ �ĉ y
# , which is a general consequence of our

symmetry protected topological order.
Now, following Refs. [9,10], one can show that the last

relation, iĉ " ¼ �ĉ y
# , yields the Ising character of the

SABSs: It is shown that among the local density
operator and the spin density operators, which are given

by 
 � 1
2 ½ĉ y

a ĉ a � ĉ a ĉ
y
a � and S�� 1

4½ĉ y
a ð��Þab ĉ b�

ĉ að�T
�Þab ĉ y

b �, respectively, only Sz is nonzero while the

other components are identically zero. So, in the low
energy limit, the SABSs do not contribute to the local
density fluctuation, and its local spin density is Ising-like.
Here, note that we only use a general property of the chiral
symmetry; thus, the Ising character is a direct consequence
of our symmetry protected topological order.

Quasiclassical Eilenberger theory.—Let us now micro-

scopically determine ‘̂z and H�. For this purpose, we here
utilize the quasiclassical Eilenberger theory, which pro-
vides a quantitative theory for superfluid 3He at low pres-
sures [25]. This is based on the quasiclassical Green’s

functions g � gðk̂; r; i!nÞ with the Matsubara frequency

!n ¼ ð2nþ 1Þ�T (n 2 Z) and the 2� 2 unit matrix �0

g ¼
�0g0 þ ��g� i�yf0 þ i���yf�

i�yf
y
0 þ i�y��f

y
� �0g

y
0 þ ��g

y
�

2
4

3
5: (5)

The evolution is governed by the Eilenberger equation

½i!n�z � Sðk̂; rÞ; g� ¼ �ivF � rg. The 4� 4 matrix S
consists of the Zeeman energy VZ and the self-energies,

Sðk̂; rÞ ¼ 1

1þ Fa
0

�zVZ þ ��ðk̂; rÞ�� �ðk̂; rÞ
�yð�k̂; rÞ ��

�ðk̂; rÞ��
�

" #
;

(6)

where �� denotes the Fermi liquid corrections obtained as

��ðk̂; rÞ ¼
P

‘A
a
‘hP‘ðk̂; k̂0Þg�ðk̂; r; i!nÞik̂0;!n

. P‘ is the

Legendre polynomial and h���ik̂;!n
¼T

P
j!nj<Ec

R
dk̂
4� , with

a cutoff Ec. The coefficient Aa
‘ �Fa

‘=½1þFa
‘=ð2‘þ1Þ� is

parameterized with the antisymmetric Fermi liquid pa-
rameters, Fa

0 ¼ �0:695 and Fa
1 ¼ �0:5 [20].

The gap equation is obtained as �abðk̂; rÞ ¼
hVcd

abðk̂; k̂0Þ½i���yf�ðk̂0; r; i!nÞ�cdik̂0;!n
, with a, b, c,

d ¼" , # . At the low pressure limit, the pair interac-

tion of 3He atoms is described as Vcd
abðk̂; k̂0Þ ¼

3j�jk̂�k̂0��ac�bd �Q��ðk̂; k̂0Þð��Þacð��Þbd. The first

term arises from the p-wave interaction with SOð3ÞS �
SOð3ÞL � Uð1Þ and the second term is the dipole interac-

tion, where Q��ðk̂; k̂0Þ is obtained from Q��ðk; k0Þ ¼
gDR

R
r�3ð��� � 3r̂�r̂�Þe�iðk�k0Þ�rdr with k � k̂kF. The

factor R includes the contributions of high energy quasi-
particles [26]. The dipole interaction can be expressed in
terms of the partial wave series (p-, f-, and higher waves).
However, since the pairing interaction between 3He atoms
is dominated by the SOð3ÞS � SOð3ÞL � Uð1Þ channel and
the dipole interaction can be regarded as a small perturba-
tion, we take account of only the p-wave contribution

of Q��ðk̂; k̂0Þ. Then, the gap equation for ��ðrÞ is given
by ��ðrÞ ¼ ���R

�1
��ðn̂; ’Þfð3j�j � ~�DÞhk̂�f�ik̂;!n

�
3~�D½���hk̂�f�ik̂;!n

þ ����hðk̂� fÞ�ik̂;!n
�g, with the di-

mensionless factor ~�D � 3�
10 gDR. At the thermodynamic

limit with �x ¼ �y ¼ �k and �z ¼ �?, the gap equation

reproduces cos’ ¼ � 1
4
�?
�k

[27–29].

The Eilenberger and gap equations with Eq. (1) provide
self-consistent equations for g under a fixed (n̂, ’). The

Eilenberger equation with g2 ¼ ��2�0 is numerically

solved with the Riccati parameterization in the system
that two specular walls normal to ẑ are situated at z ¼ 0
and z ¼ 20�. The numerical procedure is the same as that
in Refs. [14,30]. We solve the gap equation with j�j�1 ¼
�Tc0

P
j!nj<Ec

j!nj�1 and ~�D=�
2 ¼ 2� 10�4 (2� 10�5),

where we set the cutoff Ec ¼ 20�Tc0. Note that since the

ratio ~�D=�
2 is associated with the distortion of �� in the

thermodynamic limit [29], it is independent of the energy
cutoff. The coherence length � � vF=�Tc0 is estimated
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about 80 nm at the zero pressure of 3He-B and Tc0 � 1 mK
is the critical temperature of the bulkB phase underH ¼ 0.
In a slab geometry, n̂ may be assumed to be spatially
uniform, because the length scale of the spatial variation
of n̂ is macroscopically large [20], compared with the
thickness of the sample 20� � 1:6 �m in typical experi-
ments [31,32]. Then, the stable configuration of (n̂, ’) is
determined by minimizing the thermodynamic potential
��½g� whose explicit form is the same as that given by

Vorontsov and Sauls in Ref. [33]. Note that for the thick-
ness 20�, the magnetic field induces the first-order phase
transition from the B phase to the A or planar phase at the
critical field HAB ¼ 0:09�Tc0=�n � 3:6 kG [34].

Numerical results.—Since the n̂ vector always points to
ẑ in the case of the perpendicular field H k ẑ, we here
consider a parallel field H k x̂. Figures 2(a) and 2(b)
describe the energy landscape on the unit sphere of n̂.
Figure 2(c) depicts the energy gap of the SABS evaluated
from Eq. (3). The SABS becomes gapless along the certain
trajectory on the sphere of n̂, which coincides with the

condition of ‘̂z ¼ 0. The stable configuration of n̂ is
determined as a consequence of the interplay between
dipole interaction and Zeeman energy. The former favors
the situation where n̂ is normal to the surface, namely,

‘̂z ¼ 0, while the condition for minimizing the Zeeman

energy [35], ‘̂z ¼ 1, is same as the condition that opens
the maximum energy gap in the SABS. Hence, in the
magnetic field lower than the dipolar field HD � 30 G	
0:001�Tc0=�n, as displayed in Fig. 2(a), n̂ points to ẑ. It is
seen in Fig. 2(b) that for the largerH’s it tends to tilt from ẑ

to the direction with ‘̂z � 0.

The field dependence of ‘̂z estimated with the stable
configuration of (n̂,’) is displayed in Fig. 2(d). In the limit

of the low field, ‘̂z is locked to be ‘̂z ¼ 0, which ensures

the existence of surface Majorana fermions. ‘̂z stays zero
up to the critical value �nH

�=�Tc0�0:001, which is con-

sistent with the argument that the systems with ‘̂z ¼ 0 have
the discrete symmetry. At H 
 H�, the symmetry pro-

tected topological phase with ‘̂z ¼ 0 undergoes a change

to the nontopological phase with ‘̂z � 0.
In Fig. 3(a) we plot the field dependence of the local spin

susceptibility on the surface, ~��zðz ¼ 0Þ, defined as

~���ðzÞ=�N � jM�ðzÞj=MN for a magnetic field H k r̂�.

The local magnetization M�ðzÞ is estimated as M�ðrÞ ¼
MN½ĥ� þ 1

�nH
hg�ðk̂; r; i!mÞik̂;!m

� with that in the normal

stateMN ¼ 2�2
n

1þFa
0
NFH, where NF is the density of states of

the normal 3He. It is seen from Fig. 3(a) with the solid
line that for H k ẑ, the local spin susceptibility on the
surface, ~�zzð0Þ, is considerably enhanced, compared with
~�zzðz ¼ 10�Þ (the dashed line) [34].
In contrast, when the parallel field (H k x̂) is applied,

the magnetization M�ðzÞ on the surface is sensitive to the

orientation of ‘̂. It is seen in Fig. 3(b) with the dashed line
that MxðzÞ at �nH=�Tc0¼9:2�10�4 is strongly sup-

pressed in the surface region, where n̂ k ẑ, that is ‘̂z ¼ 0,
is energetically favored. This implies that the SABS does
not contribute to MxðzÞ on the surface and is consistent
with the property of the Majorana Ising spins.
In the relatively high field �nH=�Tc0 ¼ 0:0018, how-

ever, MxðzÞ is enhanced around the surface, while MzðzÞ
which is perpendicular to H k x̂ emerges on the surface.
This emergence of MzðzÞ on the surface reflects the

stable configuration of (n̂, ’), where ‘̂z ¼ Rxzðn̂; ’Þ de-
viates from zero and is less than unity. As displayed in
Figs. 3(a) and 3(b), the magnetic field within the range of

0< ‘̂z < 1 significantly induces MzðzÞ and ~�zxðzÞ on the
surface, where the SABS opens the finite energy gap and
the winding number w is not defined.

0

 0.2

 0.4

 0.6

 0.8

1.0

 1.2

 0.0001  0.001  0.01
(d)

FIG. 2 (color online). Energy landscape on the unit sphere of
n̂, ��ðn̂Þ, at �nH=�Tc0 ¼ 9:2� 10�4 (a) and 0.0061 (b) where
we fix ’=� ¼ �0:5537 which minimizes the dipole interaction.
We also set H k x̂ and T=Tc0 ¼ 0:2. The bright (dark) color
depicts the higher (lower) energy. The energy gap minjEðkkÞj of
Eq. (3) is displayed in (c). (d) Field dependence of ‘̂z estimated
with the stable (n̂, ’) for ~�D=�

2 ¼ 2� 10�4 (the solid line)
and 2� 10�5 (the dashed line).
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FIG. 3 (color online). (a) Field dependence of ~���ðzÞ=�N at
T ¼ 0:2Tc0. The solid (dashed) lines denote ~�zzð0Þ (~�zzð10�Þ)
for H k ẑ and the symbols correspond to ~��xð0Þ for H k x̂.

(b) M�ðzÞ for H k x̂ at �nH=�Tc0 ¼ 9:2� 10�4 (dashed line)

and 0.0018 (solid lines), whereMy;z at�nH=�Tc0 ¼ 9:2� 10�4

are zero. All data are taken with ~�D=�
2 ¼ 2� 10�4.
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Conclusions.—Here, we have clarified that the interplay
of dipole interaction and a magnetic field in 3He-B involves
a new class of quantum phase transition, that is, the topo-
logical phase transition with the spontaneous breaking of
the hidden Z2 symmetry. Using the quasiclassical theory,
we have demonstrated that 3He-B stays topological as the
symmetry protected topological order and Majorana Ising
spins exist unless the Z2 symmetry is spontaneously bro-
ken at the critical fieldH�. The quantum phase transition is
accompanied by the anomalous behavior of spin suscepti-
bilities, which is observable through NMR experiments
[36,37] in a slab geometry.
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