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Experimentally measured velocities are used to obtain the one- and two-particle distribution functions

f1 and f2 and the two-particle correlation function g2 � f2 � f1f1. The fluctuating velocities of

interacting charged microparticles were recorded by tracking their motion while they were immersed

in a dusty plasma. The phase space was reduced by having only two particles in a harmonic one

dimensional confining potential. In statistical theory, g2 is usually said to be dominated by the randomness

of collisions, but here we find that it is dominated by collective oscillatory modes.
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Interacting particles that are confined to one dimensional
(1D) motion, so that one particle cannot pass another, are
found in many systems. These include optically-confined
colloidal particles in an aqueous solution [1,2], a chain of
ions in a storage ring [3], Wigner crystals consisting of
electrons confined to quantum wires [4], atoms on carbon
nanotubes [5], microfluidic crystals [6], ball bearings in
channels [7], dusty plasmas [8,9], and single-channel ion
flow across biological membranes [10]. To be one dimen-
sional, these systems require a confinement force so that
one particle does not cross another [11]. Some of these
systems also have a thermal bath.

The combination of a confining force and a thermal bath
can lead to a battle between probabilistic and deterministic
motion. In our experiment, there are two microparticles.
Their motion is partly probabilistic, i.e., stochastic, because
they are immersed in a gas of many atoms; and they are
partly deterministic because they are confined in an electri-
cal potential well. The two microparticles are charged and
interact with one another through an electrical repulsion. As
was pointed out by van Zon and Cohen [12], in a colloid the
greater mass of amicroparticle as compared to themolecules
in the surrounding liquid allows the many-particle problem
to be simplified; the effect of the molecules can be consid-
ered as contributing only to friction and Brownian motion of
the microparticle, even when the microparticle also experi-
ences confining forces. The same simplifying principle ap-
plies to our experiment, with its microparticles immersed in
a partially ionized gas. In our experiment, we will describe
the battle of probabilistic and deterministic motion using
experimentally determined particle distribution functions.

A many-particle system is described by an N-particle
distribution function fN in the statistical theory of gases
[13], liquids [14], and plasmas [15]. As it is used in the
Liouville equation [15], fN represents the probability per
unit volume of finding the system, at a given time, some-
where in the 6N dimension phase space defined by the
positions and velocities of all N particles. A smaller phase
space can be used by averaging fN , as in the Bogoliubov-
Born-Green-Kirkwood-Yvon hierarchy [15,16], yielding

distribution functions, f1 and f2 for one and two particles,
respectively. Here f1ð�Þ is the probability per unit volume
in six-dimensional phase space of finding any particle� at a
specified position and velocity, while the two-particle dis-
tribution f2ð�;�Þ is a joint probability for particles� and�
to be found atx�, v� andx�, v�. To describe the interactions

of particles, for example due to collisions, one invokes

f2ðx�; v�;x�; v�; tÞ ¼ f1ðx�; v�; tÞf1ðx�; v�; tÞ
þ g2ðx�; v�;x�; v�; tÞ; (1)

which is called a cluster expansion [14] or cumulant expan-
sion [17]. Here, g2 is a correlation function that is nonzero if
the particles interact or zero if they move independently.
Positive and negative values of g2 indicate events that are
more or less probable, respectively, than is typical. For
many-body systems including nonideal gases [13,18],
liquids [14], and weakly coupled plasmas [15], Eq. (1) is
accompanied by cluster expansions for higher-order distri-
bution functions fN . (We note that since strongly coupled
plasmas can behave like nonideal gases or liquids, it would
be reasonable to use them in that case as well.) For these
many-body systems it is generally necessary to make the
approximation of truncating the cluster expansion at some
level [15], but in this Letter, the experiment has only two
microparticles, which allows us to use Eq. (1) exactly
without any truncation.
While f2 and g2 have prominent places in the theory for

statistical physics of gases and plasmas that are dense
enough that collisions are significant, they have seldom
been determined using velocities and measured in experi-
ments. In our search of the literature, we have not found
any previous determination of f2 and g2 in plasmas, or any
other physical system, using experimental velocity data as
we shall do in this Letter.
To measure f2 and g2, we designed an experiment that

allows direct observation of the particles in a reduced
phase space. We used two charged polymer microparticles,
which were restricted to move mainly in only one dimen-
sion, and were tracked using video microscopy. Measuring
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the microparticle velocity and obtaining f2 and g2 in this
experiment allows us to observe not only the probabilistic
effects described by f2 and g2 in statistical theory, but also
any coherent or deterministic motion arising from correla-
tions in the motion of the particles. Probabilistic effects
resembling Brownian motion are provided by the combi-
nation of collisions (with the large number of gas atoms
that filled an entire experimental volume) and electrical
fluctuations in the plasma. Deterministic effects in the
motion also occur, because the two microparticles interact
and are confined. In addition to the microparticles and gas,
the experimental system included electrons and positive
ions, which had a much smaller number density than the
neutral gas atoms.

Our mixture of micron-size particles of solid matter,
electrons, ions, and neutral gas atoms is called a dusty
plasma [19]. The microparticles collect electrons and ions
constantly, but in unequal numbers, so that they have a
negative charge equivalent to several thousand electrons
[20].When the plasma is formed above a horizontal surface,
such as an electrode, a boundary region of a few mm
thickness is formed, which has a significant electric field
that is capable of levitating the microparticles. This bound-
ary region, called a sheath, conforms to the shape of the
surface beneath it. By shaping the surface, one can confine
clusters of a few particles [21–23]. The vertical displace-
ments of the microparticles are so small, due to a strong
vertical gradient of the sheath’s electric field, that the mo-
tion is essentially limited to a horizontal plane.

In our experiment, the arrangement of microparticles is
reduced to being 1D. This was done by shaping the sheath
as shown in the Supplemental Material [24]. The two
particles aligned along x̂, with displacements that were
largest along the x axis but much smaller in the other
two directions, Fig. 1(a). A similar confinement was used
in Ref. [25]. To generate a weakly ionized plasma, we
applied 180 V peak-to-peak 13.56 MHz potentials between
the lower electrode and the grounded vacuum chamber.
Capacitive coupling was used so that a dc self-bias of
�77 V developed on the lower electrode. The chamber
was filled with argon gas at 13.5 mTorr pressure and 301 K
temperature. Using a Langmuir probe located in the plasma
near the particle location, the average electron energy was
2.4 eV with an electron number density 2:8� 1014 m�3.
The microparticles were 4:81� 0:08 �m in diameter and
m ¼ 8:93� 10�14 kg mass. The microparticles, which
had a time-averaged spacing of r0 ¼ 0:559� 0:002 mm,
experienced Epstein drag as they moved through the neu-
tral argon atoms, with a friction coefficient of 2 s�1 [26].
The microparticles were imaged from above at
100 frames=s, Fig. 1(a), and their positions and velocities
were calculated as in Ref. [27]. Using a straight-forward
adaptation of the method of Sheridan et al. [28] for 2D
systems, we find Q=e ¼ �ð4260� 170Þ and � ¼ 2:11�
0:01, where � � r0=�D. Using the measured value r0, we

obtain �D ¼ 0:264� 0:003 mm [29]. Critical experimen-
tal parameters, including the dc self-bias and gas pressure,
were verified to remain steady within measurement uncer-
tainties during the observations.
Our system of two confined particles can be described

by a phase space consisting of two positions and two
velocities, which can be further reduced by averaging the
distribution functions over position. This is suitable for our
experiment since the microparticles mainly oscillate with
small amplitudes about nearly fixed equilibrium positions
(as can be seen in the video in the Supplemental Material
[24]). Thus, we will analyze motion in the 2D subspace of
vx;� and vx;�, which will allow us to more easily present

results for f2 and g2 and use them to assess the competition
between probabilistic and deterministic motion. In this
reduced phase space, f1ðvx;�Þdvx;� is the probability that

particle � has a velocity in the range vx;� < v� < vx;� þ
dvx;�, and f2ðvx;�; vx;�Þdvx;�dvx;b is the joint probability

that particles � and � have velocities in the ranges vx;� <
v� < vx;� þ dvx;� and vx;� < v� < vx;� þ dvx;�, respec-

tively. The experimental conditions are constant, so that the
distributions f1 and f2 are independent of time. In this
reduced phase space, Eq. (1) is

f2ðvx;�; vx;�Þ ¼ f1ðvx;�Þf1ðvx;�Þ þ g2ðvx;�; vx;�Þ: (2)

FIG. 1 (color online). (a) A side-view sketch of two micro-
particles, labeled � and �, in a harmonic confining potential.
The microparticles move mainly along the x axis, and they
oscillate in the confining potential. (b) Sequence of top-view
images of the two microparticles [24] recorded by video mi-
croscopy, showing their small displacements with time. (c) The
one-particle velocity distribution f1ð�Þ for microparticle � is
presented as a histogram of velocity observations. It is slightly
non-Gaussian; the deviation from a Gaussian fit is shown in
(d) with an expanded scale.
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We obtain the velocity distribution functions f1,
Fig. 1(b), as a histogram of observations of particle veloc-
ities. The data shown in Fig. 1(b) were obtained by binning
all our measurements of the velocity of particle �. The
steady conditions of the experiment allow us to use time
averaging of data to serve as ensemble averaging. In
Fig. 2(b), we present the product f1ð�Þf1ð�Þ, which ap-
pears in the cluster expansion Eq. (2). Unlike f1ð�Þ by
itself, which is a function of only the velocity of particle �,
the product f1ð�Þf1ð�Þ is a function of the velocities of
both microparticles. This product would represent the joint
probability density if the two particles were independent in
their motions. Next we will consider f2, which includes the
effects of the correlation g2.

Our main results, the two-particle velocity distribution
f2 and correlation function g2 in Figs. 2(a) and 2(c), reveal
significant correlations. These correlations can be detected
in f2 by noting its noncircular contours, which are unlike
the more circular contours of f1ðvx;�Þf1ðvx;�Þ in Fig. 2(b).

The correlations can be detected more conspicuously in g2,
which is calculated from f2 using Eq. (2). We need a
qualitative measure of the relative contribution of correla-
tions. For this purpose, we find that the ratio g2=f2 is

instructive, as shown in Fig. 2(d). This ratio reveals that
the correlations are most significant at velocities
>1:0 mm=s. It is striking that as much as 50% or even
more of f2 is accounted for by the correlations at these
higher velocities; for example at vx;� ¼ vx;� ¼ 1:5 mm=s,

g2 represents � 60% of f2.
Correlations are in general the result of interactions of

nearby particles. In our experiment the microparticles in-
teract constantly, like neighboring atoms in a solid. Since
these interactions in a solid can sustain oscillations, or even
waves like sound waves, we are motivated to examine our
correlations for signatures of oscillations.
With only two microparticles confined along a single

axis, our system can sustain two kinds of oscillations. In
the breathing mode, the two microparticles always move
oppositely: toward one another (due to the confinement)
and then away from one another (due to their mutual
repulsion) [22,23]. In the center-of-mass or sloshing
mode [22,23], the two microparticles move as one, oscil-
lating back and forth in the confining potential. In the
parameter space vx;�vx;� that we use in Fig. 2, if only a

breathing mode is present, we would expect to observe
events in only quadrants II and IV, where the two velocities
are always opposite, as shown in Fig. 3(a). On the other
hand, if only a center-of-mass mode is present, we would
expect events to be observed in quadrants I and III, where
the two velocities are in the same direction.
To examine our correlations for signatures of these two

modes, we will take advantage of their different frequen-
cies. In the frequency spectrum of the particle velocity,
Fig. 3(b), we see two distinct peaks, at 2:028� 0:002 and
3:712� 0:005 Hz, which indicate the two modes of inter-
est. Since most of the spectral power for velocity is con-
centrated in these two peaks, we expect that velocity
correlations of two particles, as measured by g2, will also
be dominated by these two modes. To identify which
peak corresponds to which mode, we apply a frequency

FIG. 2 (color online). (a) The two-particle velocity distribution
function f2, (b) the product of the one-particle distribution
functions, and (c) the correlation function g2, calculated using
Eq. (2). Contours of f1ð�Þf1ð�Þ are more circular than those of
f2. Positive correlations are shown in red (the color at the top of
the color scale), while negative correlations are shown in blue
(the color at the bottom of the color scale). (d) Alternate pre-
sentation of g2 shown normalized by f2. For example, if the
value of g2=f2 is 0.6 at a specific location in phase space vx;�

vx;�, then correlated dynamics account for 60% of the two-

particle distribution’s value.

FIG. 3 (color online). (a) Labeling scheme for the quadrants of
phase space according to the two types of oscillatory motion.
(b) The frequency spectrum for the particle velocities, which is
calculated as the square of the fast Fourier transform of the
velocity time series for a particle. The frequency spectrum has
two peaks, at 2.0 and 3.7 Hz, which we will identify as the
center-of-mass and breathing modes, respectively.
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bandpass filter to the velocities time-series data, as shown
in the Supplemental Material [24]. We then recalculate f1,
f2, and g2. The results, for bandpasses that are centered on
the two peaks, are shown in Fig. 4.

Figure 4 reveals features in the correlation g2 that are
distinctly different for the low and high-frequency band-
passes. For the low-frequency bandpass centered at 2.0 Hz,
correlations are most positive in quadrants I and III, but for
the high-frequency bandpass at 3.7 Hz they are most posi-
tive in quadrants II and IV. Recall that events associated
with the center-of-mass mode are expected in quadrants
I and III, leading us to identify the 2 Hz mode as the center-
of mass mode. Likewise, we identify the 3.7 Hz mode as
the breathing mode [30].

We find that the correlation g2 is dominated not by
randomness, but by motion associated with two modes.
This result is contrary to the usual expectation in statistical
theory for gases [13] and plasmas [15,16]. If the motion
had no deterministic character, we would expect g2 in
Fig. 2(c) to lack a distinct pattern. However, g2 does
have a distinct pattern. Moreover, after frequency filtering
and then recomputing g2 in Fig. 4, we find even more
distinctive patterns in g2 that are clearly attributable to
the two modes: center-of-mass and breathing [31]. Thus,
as a measure of the battle between deterministic and ran-
dom motion, g2 is dominated by the kind of modes that are
most often thought of as deterministic [32].

In conclusion, we have used experimental data to obtain
the two-particle distribution f2 and calculate the correlation
function g2 using Eq. (2). For our dusty plasma, we find that
g2 has distinctive signatures of oscillatory modes. The

experiment was designed so that two charged microparticles
were immersed in a partially ionized gaswith confinement to
limit their motion to 1D, i.e., along a single axis without
passing one another. Because of their charges, the two par-
ticles interacted constantly, and due to the confinement they
had two oscillatory modes corresponding to center-of-mass
and breathing motion. We find that the frequency spectrum
forg2 has distinctive signatures of the two oscillatorymodes.
Although the statistical theory of gases and plasmas often
considersg2 as an indicator of probabilistic effects associated
with dissipation and collisions, in this experiment we find
that g2 is dominated by collective effects.
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