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We derive the nonequilibrium kinetic equation describing the motion of chiral massless particles in the

regime where it can be considered classically. We show that the Berry monopole which appears at the

origin of the momentum space due to level crossing is responsible for the chiral magnetic and vortical

effects.
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Introduction.—The generation of nondissipative cur-
rents in a chiral (parity violating) system in response to
an external magnetic field has a attracted significant inter-
est recently. Such an effect, noted earlier in different con-
texts in Refs. [1,2], has been recently proposed as an
intriguing explanation for the charge-dependent correla-
tions in heavy-ion collisions in Refs. [3,4] and termed the
chiral magnetic effect (CME). It has been also shown
recently in Ref. [5] that the hydrodynamics of chiral sys-
tems with an anomaly requires the presence of such
currents, as well as currents induced by the vorticity of
flow-the chiral vortical effect (CVE), discovered earlier in
a microscopic calculation in an astrophysical context in
Ref. [6], and rediscovered recently in gauge-gravity duality
calculations in Refs. [7,8].

The interesting applications of these chiral transport
effects involve highly nonequilibrium conditions, such as
those arising in the early stages of the heavy-ion collisions,
when the magnetic fields created by passing ions are still
strong. However, derivations of these effects have been
mostly done assuming thermal and chemical equilibrium.
The aim of this Letter is to address this shortcoming of
theory.

A natural framework to study nonequilibrium conditions
is a kinetic theory. As any useful theory, it has limitations,
such as assumption of the classical motion between colli-
sions and the weakness of the coupling. Nevertheless,
a kinetic description would undoubtedly be an important
step for our understanding of the chiral transport
phenomena.

Most of the ingredients of the approach presented here
can be found in the literature on the physics of geometric
phases introduced by Berry in Ref. [9]. The relevant clas-
sical equations of motion were introduced in Ref. [10] (see
also Ref. [11] for a review). The kinetic equation in the
presence of the Berry curvature has been studied, e.g., in
Refs. [12,13]. The most recent and closely relevant appli-
cations include Refs. [14,15]. Unrelated to the above so far,
a very important step towards a kinetic description of the
CME and CVE was made recently in Ref. [16].

Putting these ingredients together we derive the desired
nonequilibrium expressions for the CME and CVE which

are, to the extent of our knowledge, new. The key obser-
vation of the present Letter is that for Weyl fermions the
Berry curvature, being the field of a monopole, leads
directly to the CME. We also point out that the CVE can
be similarly understood by simply replacing the Lorentz
force due to the magnetic field by the Coriolis force. In the
following, we shall present a reasonably self-contained
derivation of these results using a formalism somewhat
complementary to traditional approaches. This will allow
us also to make connections to other field-theoretical con-
cepts (such as Abelian projections) more familiar in the
particle theory context.
Kinetic equation.—The kinetic equation describes the

motion of particles in the regime where collisions are rare
enough that motion between collisions is classical. In terms
of the distribution function fðt; x;pÞ the equation reads

df

dt
� @f

@t
þ @f

@x
_xþ @f

@p
_p ¼ C½f�: (1)

We think of a ‘‘cloud’’ of particles each of which follows
its classical trajectory xðtÞ, pðtÞ. As a result, the distribu-
tion evolves with time in such a way that if one follows a
local volume occupied by a set of particles along the
trajectory, the number of particles in it can only be changed
by collisions.
The CME is known to be closely related to the chiral

anomaly [2,3,5]. On the other hand, it is clear from the
description above that the number of particles in the phase
space cannot change. How could a kinetic equation ac-
count for anomalous particle number nonconservation? In
other words, how can a classical equation account for a
quantum anomaly? As we shall see below, the answer is, in
two words: Berry monopole.
Path integral and U(2) gauge invariance.—Consider the

Hamiltonian for a Weyl particle:

H ¼ � � p: (2)

For each momentum p it represents a two-state system
with energy gap 2jpj.
It is more straightforward to obtain the classical limit in

the path integral formulation rather than in the canonical
formulation of quantum mechanics usually employed to
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describe the Berry connection. Consider the transition
amplitude between the two spin states i and f. By inserting
the sums over complete sets of eigenstates of coordinates
and spin, jx; si, and momenta and spin, jp; �i, the ampli-
tude can be written as a path integral

hfjeiHðtf�tiÞjii
¼

�Z
DxDpP exp

�
i
Z tf

ti

ðp � _x� � � pÞdt
��

fi
; (3)

where we need to take a matrix element ½. . .�fi of the path-
ordered product of the matrices expf�i� � p�tg over each
path xðtÞ, pðtÞ in the phase space. These matrices can be
thought of as describing the rotation of the state of the
particle in the spin space as it moves along.

The massless particles we describe have only one helic-
ity state (the opposite helicity state corresponds to an
antiparticle). In order to consider classical motion of
such a particle we need to diagonalize the matrix in the
helicity basis and then apply the usual method of stationary
phase to determine the classical trajectory. This diagonal-
ization can be done at each point on the trajectory using
unitary matrix Vp such that

Vy
p� � pVp ¼ jpj�3: (4)

If the values of momenta at two neighboring points t1 and
t2 are p1 and p2, we insert identity matrices between the
exponential factors in the following way:

. . .Vp2
Vy
p2
expf�i� � p2�tgVp2

Vy
p2
Vp1

Vy
p1

� expf�i� � p1�tgVp1
Vy
p1
. . .

¼ . . .Vp2
expf�ijp2j�3�tgVy

p2
Vp1

� expf�ijp1j�3�tgVy
p1 . . . (5)

If the �p � p2 � p1 is small, we can write the extra
unitary rotation between the two neighboring exponents as

Vy
p2
Vp1

�expð�iâp ��pÞ; where âp¼ iVy
prpVp (6)

is a Hermitian 2� 2 matrix.
Performing the above diagonalization along the whole

trajectory and assembling the exponents into the path in-
tegral one obtains an alternative expression for the ampli-
tude in Eq. (3):

hfjeiHðtf�tiÞjii ¼
�
Vpf

Z
DxDpP exp

�
i
Z tf

ti

ðp � _x� jpj�3

� âp � _pÞdt
�
Vy
pi

�
fi
: (7)

If we did not insist on diagonalizing the matrix � � p,
we could have chosen an arbitrary Uð2Þ rotation, say
VpUp, instead of Vp. This results in a local ‘‘gauge

transformation’’ of the ‘‘action’’ such that

�jpj�3 ! �jpjUy
p�3Up;

âp ! Uy
pâpUp þ iUy

prpUp:
(8)

This gauge freedom corresponds to the free choice of the
phase and spin quantization direction for the momentum
states: jp; si ! Upjp; si along the trajectory. Clearly this

choice only affects the expression for the amplitude in
Eq. (7), and not the value of the amplitude itself. We use
this redundancy of description to choose the helicity basis
at each p. This choice diagonalizes � � p and enables us to
take the classical limit.
Abelian projection and Berry monopole.—Fixing this

non-Abelian Uð2Þ gauge freedom by diagonalizing the
Hamiltonian is mathematically similar to the Abelian pro-
jection introduced by ’t Hooft in Ref. [17]. In the classical
regime the contribution of the transitions caused by the off-
diagonal components of âp is negligible (in Ref. [17] the

‘‘non-Abelian’’ part of the gauge field is nonpropagating
due to confinement). Suppressing these off-diagonal com-
ponents, we still have a Uð1Þ �Uð1Þ gauge freedom cor-
responding to selecting arbitrarily the complex phases for
the helicity eigenstates at each momentum. Focusing on
helicity þ1 we can denote the corresponding diagonal
component ½âp�11 � ap. Then the classical action for the

helicity þ1 particle becomes

I ¼
Z tf

ti

ðp � _x� jpj � ap � _pÞdt: (9)

The classical, or adiabatic, approximation will break down
when the two eigenvalues of the Hamiltonian are degener-
ate, i.e., at p ¼ 0. As we shall see, this point is the source
of the effects of the quantum anomaly.
As in ’t Hooft’s original application of the Abelian

projection, even if the non-Abelian field âp is a pure gauge,

Eq. (6), the Abelian component ½âp�11 � ap is nontrivial.

Finding the unitary matrix Vp in Eq. (4) and calculating âp

in Eq. (6), one obtains the well-known result that the
corresponding Abelian field ap is the field of a ‘‘mono-

pole’’ [18,19] at jpj ¼ 0. Of course, the physical amplitude
cannot depend on the gauge choice in Eq. (9). We expect
physical observables to depend only on the Abelian field
strength b ¼ rp � ap. One finds

b ¼ p̂

2jpj2 ; where p̂ � p

jpj : (10)

Equations of motion.—Before we write the classical
equations of motion, let us quantify the conditions of their
applicability. The classical, or adiabatic, approximation
requires the off-diagonal components of âp � _p in Eq. (7)

to be small compared to the energy gap 2jpj. This means
the forces, _p, on the particle cannot be too strong. For
example, if the particle moves in a magnetic field B: B �
jpj2, where we used jâpj � 1=jpj [cf. Eq. (10)]. This

condition is obvious physically, since particles with
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momenta as low as the momenta on the lowest Landau
orbit cannot be treated classically.

It is easy to couple the classical particle described by the
action in Eq. (9) to an external electromagnetic field given
by scalar and vector potentials � and A. By variations of
the resulting action

I ¼
Z tf

ti

ðp � _xþA � _x��� jpj � ap � _pÞdt; (11)

one obtains the desired equations of motion
(cf. Refs. [10,11]):

_x ¼ p̂þ _p� b; (12)

_p ¼ Eþ _x�B: (13)

Without the Berry flux b, these equations are the familiar
equations for the velocity of a massless particle and the
Lorentz force. Without electromagnetic field the Berry
curvature b drops out of the equations, because _p ¼ 0.

Substituting Eq. (13) into Eq. (12) and solving for _x one
finds ffiffiffiffi

G
p

_x ¼ p̂þE� bþBðp̂ � bÞ; (14)

ffiffiffiffi
G

p
_p ¼ Eþ p̂�Bþ bðE �BÞ: (15)

Here, G ¼ ð1þ b � BÞ2 is the determinant of the 6� 6
matrix of coefficients in Eqs. (12) and (13) for _x and _p.
Substituting into Eq. (1) we can then obtain the desired
kinetic equation for the distribution function of such par-
ticles in the phase space.

Chiral magnetic effect.—It is important to take account
of the fact that the invariant measure of the phase-space

integration is given by
ffiffiffiffi
G

p
d3xd3p=ð2�Þ3; see, e.g.,

Ref. [20]. In particular, one can check using equations of
motion (14) and (15), and Maxwell equations r � B ¼ 0,
r�E ¼ @B=@t that this measure obeys the Liouville
equation

@

@t

ffiffiffiffi
G

p þ @

@x
ð ffiffiffiffi

G
p

_xÞþ @

@p
ð ffiffiffiffi

G
p

_pÞ¼2�E �B�3ðpÞ; (16)

where the last term is due to the Berry monopole rp � b ¼
2��3ðpÞ, Eq. (10). The last term is the effect of the
quantum anomaly which ‘‘injects’’ particle number viola-
tion into our otherwise classical description. It is notable
that this term is localized at p ¼ 0, where the classical
description must break down due to level crossing.

The current density is given by j ¼ R
p

ffiffiffiffi
G

p
f _x, whereR

p � R d3p
ð2�Þ3 . Using Eq. (14) we find

j¼
Z
p

ffiffiffiffi
G

p
f _x¼

Z
p
fp̂þE�

Z
p
fbþB

Z
p
fðp̂ �bÞ: (17)

The first term gives the usual current, while the second is
the anomalous Hall current. Both vanish in a state with
isotropic momentum distribution, such as the equilibrium

state. The last term is the desired nonequilibrium expres-
sion of the CME.
Using notations E ¼ jpj and an overbar to denote the

average over the unit sphere of directions of vector p̂ we
can write

j CME ¼ B
Z
p
fðp̂ � bÞ ¼ B

4�2

Z 1

0
fðE; p̂ÞdE: (18)

This equation agrees with the result conjectured in
Ref. [16] for an isotropic distribution. In the case of the
Fermi-Dirac distribution it reproduces the well-known re-
sults (such as jCME ¼ �B=ð2�Þ2 at zero temperature).
Chiral anomaly.—To find the effect of the electromag-

netic anomaly we calculate the 4-divergence of the particle
number current in Eq. (17). It is illuminating to begin the
discussion by introducing the 6þ 1 phase space current

(�, � _x, � _p), where � ¼ ffiffiffiffi
G

p
f obeys the continuity

equation with a source [21]

@�

@t
þ @ð� _xÞ

@x
þ @ð� _pÞ

@p
¼ 2�E �Bf�3ðpÞ; (19)

which follows from Eq. (1) and Eq. (16). Integrating over
momentum p we obtain

@n

@t
þ r � j ¼ 1

4�2
E �Bf0; (20)

where, as in Eq. (17), ðn; jÞ ¼ R
pð�; � _xÞ is the 3þ 1

space-time current density and f0 is the value of the
distribution function f at p ¼ 0. For the Fermi-Dirac
distribution at zero temperature and nonzero chemical
potential, f0 ¼ 1 and we reproduce the standard expres-
sion of the electromagnetic anomaly.
Strictly speaking the above calculation is not completely

legitimate because we integrated over the whole momen-
tum space, including the singular point p ¼ 0, where the
classical description is not applicable. The way to think
about this equation is to exclude the region jpj<� around
the singularity. The value of�must be large enough so that

the classical description applies outside of it (� 	 ffiffiffiffi
B

p
).

Then, in the classical region jpj>�, the 6þ 1 phase
space current (�, � _x, � _p) obeys the continuity equation. In
other words, the particles, in the absence of collisions,
cannot be created or destroyed in the classical region.
They can only enter or exit the region through the boundary
of the region at jpj ¼ �. Integrating the continuity
equation over the classical region jpj> � and defining
the 3þ 1 current density in the classical region only
ðn�; j�Þ ¼

R
jpj>�ð�; � _xÞ we find that the nonconservation

of the 3þ 1 space-time current is matched by the
momentum-space flux into the classical region through
the boundary at jpj ¼ �:

@n�
@t

þ r � j� ¼
Z dS�

ð2�Þ3 � Jp; (21)

where the flux density is given by
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J p � � _p ¼ ðEþ p̂�BÞfþ 2�E � Bf p̂

4�jpj2 : (22)

The first term on the right-hand side is due to acceleration
of the particles on the boundary jpj ¼ � which moves
them in or out of the classical region. This term gives a
negligible contribution to the total flux in Eq. (21) if � is
small enough that the variation of f over the boundary
can be neglected. The total flux from the last term,
however, tends to a finite limit when� ! 0, which is given
by Eq. (20). The origin of this net flux is the anomaly
which operates, as is well known, at the point of level
crossing p ¼ 0, lying inside the region jpj< �, where
the motion of particles must be treated fully quantum
mechanically.

Chiral vortical effect.—To describe the CVE we need to
realize that, unlike the external magnetic fieldB, which we
can set directly, the vorticity ! is a property of the flow of
particles, which is indirectly controlled by external fields
and initial conditions. Moreover, the definition of vorticity
involves the hydrodynamic limit, which puts additional
conditions on flow. However, we can generalize the vor-
ticity to nonequilibrium flows in the following way. We can
decide to observe a given local fluid element in a co-
moving frame, which will have to rotate with angular
velocity ! with respect to the laboratory. The particles
will experience additional noninertial forces in this frame.
At this point we can generalize the problem to nonequilib-
rium by asking what additional currents such noninertial
forces induce.

To linear order the only such force is the Coriolis force:

_p ¼ 2jpj!� _xþOð!2Þ: (23)

(This classical result can be also verified by considering the
Weyl Hamiltonian in the rotating frame.) The effect of this
force is the same as of a ‘‘magnetic field’’ B ! 2jpj!.
Making a corresponding substitution in Eq. (15) we arrive
at the following equation for the nonequilibrium general-
ization of the CVE:

j CVE ¼ !
Z
p
2jpjfðp̂ � bÞ ¼ !

4�2

Z 1

0
fðE; p̂Þ2EdE:

(24)

This result is also in agreement with Ref. [16] for isotropic
distribution, and reduces to jCVE ¼ �2!=ð2�Þ2 for the
well-known case of the Fermi-Dirac distribution.

Conclusion.—We presented a kinetic description of the
chiral magnetic and chiral vortical effects given by the
kinetic equation (1) with equations of motion (12) and
(13). Although these equations are ubiquitous in the con-
densed matter literature on the effects of the Berry curva-
ture, to our knowledge, their relationship to the chiral
magnetic and chiral vortical effects has not been appreci-
ated until now. The key observation that the Berry curva-
ture for the Weyl Hamiltonian is sourced by a monopole at

jpj ¼ 0 leads directly to the general nonequilibrium ex-
pressions for the chiral magnetic and chiral vortical effects
in Eqs. (18) and (24) which reproduce all known results in
equilibrium.
The presence of the monopole singularity in the momen-

tum space also provides a natural mechanism by which
anomaly can change the particle number in an otherwise
classical system. The classical description breaks down in
the region surrounding the singularity atp ¼ 0 of the size of
order of the typical momentum in the lowest Landau orbit.
The net particle creation occurs by the purely quantum
effect of anomaly (level crossing) inside this nonclassical
region. The net flux of the particles into the classical region
is then given by Eq. (21), which can serve as a boundary
condition for the kinetic equation in the classical region.
It would be interesting to use the results obtained

here to investigate the consequences of nonequilibrium for
the chiral transport effects in heavy-ion collisions [3,4,22].
We leave this and other applications to further study.
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