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We study the statistics of the work done, fluctuation relations, and irreversible entropy production in a

quantum many-body system subject to the sudden quench of a control parameter. By treating the quench

as a thermodynamic transformation we show that the emergence of irreversibility in the nonequilibrium

dynamics of closed many-body quantum systems can be accurately characterized. We demonstrate our

ideas by considering a transverse quantum Ising model that is taken out of equilibrium by an instantaneous

change of the transverse field.

DOI: 10.1103/PhysRevLett.109.160601 PACS numbers: 05.70.Ln, 05.30.Rt, 05.40.�a, 64.60.Ht

Introduction.—In the past decade or so, there has been a
revival of interest in the study of nonequilibrium dynamics
in closed quantum systems. Mainly, this is due to a series of
spectacular experiments using ultracold atoms, where the
high degree of isolation and long coherence times permit
the study of dynamics over long time scales [1]. These
experiments have raised a number of important theoretical
issues including the relationship between thermalization
and integrability [2] and the universality of defect genera-
tion in the crossing of a critical point [3]. A common way to
take a many-body system out of equilibrium is by an abrupt
change of a local or global parameter of the Hamiltonian,
this is commonly referred to as a ‘‘sudden quench.’’
Following a quench the dynamical response of the system
can be probed by studying, for example, the dynamical
correlation functions [4], the change in the diagonal entropy
[5] or the statistics of the work done [6].

Over a similar period of time, there has also been a great
deal of interest in the statistical mechanics community sur-
rounding the discovery of the nonequilibrium fluctuation
relations (see, e.g., Ref. [7] for a review). Essentially, the
fluctuation relations encode the full nonlinear response of a
system toa time-dependent change of aHamiltonian parame-
ter. In particular, they make a definitive statement regarding
the irreversible entropy production in a system following a
thermodynamic transformation and, as such, allow us to
understand the emergence of thermodynamic behavior in
systems where the microscopic laws are inherently revers-
ible. Given the current experimental interest in the nonequi-
librium dynamics of ultracold atomic systems and the recent
developments in statistical mechanics, it is natural to study
the quench dynamics of quantummany-body systems in this
new thermodynamical formulation. In this work we use the

transverse quantum Ising model [8] to provide an exact
analysis of the Tasaki-Crooks and Jarzynski fluctuation rela-
tions in a quenched many-body system. Furthermore, we
compute the irreversible entropy production and show that
the emergence of thermodynamics provides an elegant inter-
pretation of the essential physics.
Nonequilibrium quantum thermodynamics.—We begin

by reviewing some key concepts of microscopic thermo-
dynamics, allowing us to define the formalism that is used
in the rest of our study.
One of the fundamental goals of quantum thermodynam-

ics is to understand how thermodynamical laws emerge from
the underlying quantum mechanics of individual particles
[9]. In this spirit, we consider a dynamical system described
by a Hamiltonian Hð�ðtÞÞ that depends on an external work
parameter �ðtÞ, i.e., an externally controlled parameter
whose value determines the equilibrium configuration of
the system. The system is prepared by allowing it to equili-
bratewith a heat reservoir at inverse temperature� for a fixed
value of the work parameter �ðt � 0Þ ¼ �0. The initial state
of the system is thus the Gibbs state �Gð�0Þ, where

�Gð�Þ :¼ e��Hð�Þ

Zð�Þ ;

and the partition function is Zð�Þ :¼ Tr½e��Hð�Þ�. At t ¼ 0
the system-reservoir coupling is removed and a protocol is
performed on the system taking the work parameter from its
initial value �0 to a final value �� at a later time t ¼ �.
The initial and final Hamiltonians connected by the protocol
�0 ! �� have the spectral decompositions Hð�0Þ ¼P

n�nð�0Þjnihnj and Hð��Þ ¼ P
m�

0
mð��Þjmihmj, respec-

tively, where jni (jmi) is the nth (mth) eigenstate of the initial
(final) Hamiltonian with eigenvalue �n (�

0
m).
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The definition of the work done on the system W as a
consequence of the protocol requires two projective mea-
surements: The first projects onto the eigenbasis of the
initial Hamiltonian Hð�0Þ at t ¼ 0, with the system in
thermal equilibrium. The system then evolves under the
unitary dynamics Uð�; 0Þ generated by the protocol �0 !
�� before the second measurement projects onto the eigen-
basis of the final Hamiltonian Hð��Þ. The probability of
obtaining �n for the first measurement outcome followed
by �0m for the second measurement is then p0

np
�
mjn ¼

e���n jhnjUð�; 0Þjmij2=Zð�0Þ. Accordingly, the work dis-
tribution is defined as [10]

PFðWÞ ¼ X
n;m

p0
np

�
mjn�ðW � ð�0m � �nÞÞ: (1)

Equation (1) therefore encodes the fluctuations in the work
that arise from thermal statistics (p0

n) and from quantum
measurement statistics (p�

mjn) over many identical realiza-

tions of the protocol. For our purposes, it is convenient to
define the characteristic function of the work distribution
as the Fourier transform of Eq. (1) [11]

�Fðu;�Þ :¼
Z
dWeiuWPFðWÞ

¼Tr½Uyð�;0ÞeiuHð��ÞUð�;0Þe�iuHð�0Þ�Gð�0Þ�: (2)

The convenience of �Fðu; �Þ is evident when considering
the well-known Tasaki-Crooks fluctuation relation

PFðWÞ=PBð�WÞ ¼ e�ðW��FÞ [10,12]. This states that the
ratio between the forward work distribution PFðWÞ, intro-
duced above, and the backward work distribution
PBð�WÞ, obtained from the protocol �� ! �0 in which
the system is initialized at t ¼ 0 in the Gibbs state �Gð��Þ
and evolves according to Uyð�; 0Þ, is related to the differ-
ence in the equilibrium free-energy of the system �F.
Following Ref. [13] the Tasaki-Crooks relation is written
in terms of the characteristic function as

�Fðu; �Þ
�Bð�uþ i�; �Þ ¼ Zð��Þ

Zð�0Þ ; (3)

where we have introduced the backward characteristic
function �BðvÞ :¼

R
dWeivWPBðWÞ, with the complex ar-

gument v ¼ �uþ i�. Moreover, the Jarzynski equality
[14] is easily obtained from Eq. (2) by introducing the
parameter u ¼ i�, giving

�Fði�; �Þ ¼ he��Wi ¼ Zð��Þ
Zð�0Þ ¼ e���F; (4)

where in obtaining the last equality we have used
the relation �F ¼ �ð1=�Þ ln½Zð��Þ=Zð�0Þ�. Both the
Tasaki-Crooks and Jarzynski fluctuation relations are state-
ments regarding the symmetry of fluctuations in work
during thermodynamic transformations of microscopic
systems. Remarkably, these symmetries are solely deter-
mined by the equilibrium state quantity �F regardless of

how far the system is driven from equilibrium. For a recent
information-theoretic interpretation of the fluctuation rela-
tions see Ref. [15].
Irreversible entropy production.—For finite systems, the

statistical nature of work Eq. (1) requires the second law of
thermodynamics to be revised to the form hWi � �F, with
equality being reached for a quasistatic process. For all
nonideal processes, the deficit between the average work
hWi and the variation in free energy can be accounted for
by the ad hoc introduction of the average irreversible work,

hWi ¼ hWirri þ �F:

For a closed quantum system, the heat transfer into the
system Q ¼ 0 and the sole contribution to the change in
entropy is the irreversible entropy production, defined as
�Sirr ¼ �hWirri [14]. In Ref. [16] it is shown that for an
initial Gibbs state �Gð�0Þ undergoing unitary evolution
generated by a time-dependent Hamiltonian Hð�ðtÞÞ,
the irreversible entropy production is given by the relative
entropy of the instantaneous state of the system �ðtÞ ¼
Uðt; 0Þ�Gð�0ÞUyðt; 0Þ and a hypothetical Gibbs state at that
time, i.e.,

�Sirr ¼ Sð�ðtÞjj�Gð�tÞÞ
¼ Tr½�ðtÞ log�ðtÞ� � Tr½�ðtÞ log�Gð�ðtÞÞ�: (5)

In the case of a sudden quench, in which the work
parameter �ðtÞ is suddenly switched between some initial
and final value, we therefore have

�Sirr ¼ Sð�Gð�0Þjj�Gð��ÞÞ: (6)

This expression for the irreversible entropy production
induced by a sudden quench in a closed quantum system
was first noted by Donald in Ref. [17] within a different
context.
Transverse quantum Ising model.—We now apply the

framework of nonequilibrium statistical mechanics out-
lined above to the nonequilibrium transformation of a
thermal quantum spin chain. In particular, we analyze the
sudden quench of the transverse field in the quantum Ising
model. For a discussion of this model in the zero tempera-
ture limit see Refs. [6,18].
We consider a one-dimensional ring of N spin-1=2

particles that interact with their nearest neighbors via
ferromagnetic coupling along the z axis and with an exter-
nal field applied along the x axis. The Hamiltonian is

Hð�Þ :¼ �XN
j¼1

��x
j þ �z

j�
z
jþ1; (7)

where � is a dimensionless parameter measuring the
strength of the external field with respect to the spin-spin
coupling, �	

j (	 ¼ x, y, z) is the spin-1=2 Pauli operator

acting at the jth spin and periodic boundary conditions are
imposed by requiring that �	

Nþ1 ¼ �	
1 . The transverse

quantum Ising model possesses a critical point at �c ¼ 1
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as the ordering of its ground state changes discontinuously
from a paramagnetic (� > 1) to a ferromagnetic (� < 1)
phase. The Hamiltonian Eq. (7) is diagonalized by decom-
posing the Hilbert space into orthogonal parity subspaces
and following the procedure outlined in the Supplemental
Material [19]. In this way, considering the positive-parity
subspace only, the initial Hamiltonian with � ¼ �0 is
written [20]

Hð�0Þ ¼
X

k2Kþ
�kð�0Þ

�

y
k 
k � 1

2

�
; (8)

where 
k, 
y
k are fermionic creation and annihilation

operators labeled by the members of the set Kþ ¼
f��ð2n� 1Þ=N : n ¼ 1; . . . ; N=2g of positive-parity sub-
space pseudomomenta. Proceeding as earlier, the system is

prepared in the Gibbs state �Gð�0Þ ¼ e��Hð�0Þ=Zð�0Þ with
inverse temperature � and associated partition function

Z ð�0Þ ¼ 2N
Y
k2Kþ
k>0

cosh2
�
��kð�0Þ

2

�
:

The protocol constitutes the instantaneous switching of the
transverse field to the final value � ¼ ��, giving the final
Hamiltonian

Hð��Þ ¼
X

k2Kþ
�ð��Þ

�
~
y
k ~
k � 1

2

�
: (9)

Note that the differing values of the transverse field in
Eqs. (8) and (9) require diagonalizing transformations
that are quantitatively different. Consequently the post-
quench fermionic operators f~
kg differ from their pre-
quench counterparts f
kg, though the allowed values of
the psuedomomenta are identical in both cases. In the
case of a sudden quench the characteristic function
Eq. (2) takes the simplified form

�FðuÞ ¼ Tr½eiuHð��Þe�iuHð�0Þ�Gð�0Þ�: (10)

Using Eqs. (8) and (9), the trace in Eq. (10) is taken over
the eigenstates of the initial Hamiltonian fjnk; n�kig to give

�FðuÞ ¼ 1

Zð�0Þ
Y
k2Kþ
k>0

X
n�k¼0;1

e�ðiuþ�Þ�kð�0Þðnkþn�k�1Þhnk; n�kjeiu�kð��Þð~
y
k
~
kþ~
y

�k
~
�k�1Þjnk; n�ki:

The matrix elements can be evaluated explicitly to give an analytic form of the forward characteristic function. Hence,

�FðuÞ ¼ 1

Zð�0Þ
Y
k2Kþ
k>0

feðiuþ�Þ�kð�0Þ½C�
k ðu; ��Þ þ Sþk ðu; ��Þ� þ e�ðiuþ�Þ�kð�0Þ½Cþ

k ðu; ��Þ þ S�k ðu; ��Þ� þ 2g: (11)

Here we have introduced the quantities C�
k ðu; �Þ ¼ cos2ð�k=2Þe�iu�kð�Þ and S�k ðu; �Þ ¼ sin2ð�k=2Þe�iu�kð�Þ, where �k ¼

~�k ��k is the difference in the pre- and postquench Bogolyubov angles (see Supplemental Material [19]).
Verification of the fluctuation relations.—The verification of the Tasaki-Crooks relation Eq. (3) requires an expression

for the backward characteristic function. This is easily obtained using a procedure similar to that described above for the
forward characteristic function Eq. (11) under the mapping �0 $ �� ) �kð�0Þ $ �kð��Þ, �k ! ��k. The Tasaki-Crooks

relation then follows from �BðvÞ by introducing the complex parameter v ¼ �uþ i�. Noting that C�
k ð�uþ i�; �Þ ¼

C�
k ðu; �Þe���kð�Þ and S�k ð�uþ i�; �Þ ¼ S�k ðu; �Þe���kð�Þ, it is straightforward to show that

�Bð�uþ i�Þ ¼ 1

Zð��Þ
Y
k2Kþ
k>0

feðiuþ�Þ�kð�0Þ½C�
k ðu; ��Þ þ Sþk ðu; ��Þ� þ e�ðiuþ�Þ�kð�0Þ½Cþ

k ðu; ��Þ þ S�k ðu; ��Þ� þ 2g:

The ratio of the forward and backward characteristic functions is thus equivalent to the Crooks relation Eq. (3). Further, the
Jarzynski equality Eq. (4) follows from the forward characteristic function Eq. (11) by introducing the complex argument
u ¼ i�,

�Fði�Þ ¼ 1

Zð�0Þ
Y
k2Kþ
k>0

f2þ 2 cosh½��kð��Þ�g ¼ 2N

Zð�0Þ
Y
k2Kþ
k>0

cosh2
�
��kð��Þ

2

�
¼ Zð��Þ

Zð�0Þ :

To our knowledge this is the first analytic demonstration of
the fluctuation relations in a non-trivial quantum many-
body system incorporating a critical point.

Emergent thermodynamics.—The general form of the
forward characteristic function following a sudden quench
Eq. (10) admits a simple expression for the average work in
terms of its first cumulant, i.e., hWi ¼ d�F=duju¼0, thus

hWi ¼ Tr½Hð��Þ�Gð�0Þ� � Tr½Hð�0Þ�Gð�0Þ�: (12)

Using the approach presented in the Supplemental Material
[19], the evaluation of Eq. (12) leads to the following
closed analytic form for the average work done on the
spin system
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hWi ¼ X
k2Kþ
k>0

½�kð�0Þ � �kð��Þ cosð�kÞ� tanh
�
��kð�0Þ

2

�

¼ 2ð�0 � ��Þ
X
k2Kþ
k>0

cosð�kÞ tanh
�
��kð�0Þ

2

�
:

This in turn allows the calculation of the irreversible
entropy production Eq. (6) for arbitrary temperature, num-
ber of spins and quench amplitude;

�Sirr ¼ �hWi þ X
k2Kþ
k>0

ln
cosh2½��kð��Þ=2�
cosh2½��kð�0Þ=2�

:

This quantity and its thermodynamic interpretation encap-
sulate the physics of the quench problem in a closed critical
system in a remarkably simple way. Figure 1 shows the
irreversible entropy production due to a series of sudden
quenches with amplitude j�� � �0j ¼ 0:01. The left figure
shows the quantity for spin chains of several sizes and low
temperature � ¼ 100. The interpretation of the behavior is
straightforward: As the size of the system increases the
energy gap between the ground and first excited state at the
critical point begins to close. Work is performed to drive
the system across the critical region and, due to the vanish-
ing energy gap, it becomes increasingly difficult to do so
without exciting the system, thereby dissipating work. This
leads to increased irreversible entropy production and the
emergence of intrinsic irreversibility in the critical region.
Alternatively, the irreversible entropy production can be
understood in terms of the quantum relative entropy of the
instantaneous state and the hypothetical Gibbs state at
that time Eq. (5). As noted in Eq. (6), for a sudden quench
this coincides with the distance between the Gibbs states
of the pre- and postquench Hamiltonians. Near criticality,
the equilibrium state changes dramatically for small
changes in the transverse field and this is reflected in a
sharp increase in irreversible entropy production. This

interpretation can be considered as the quantum version
of the classical argument presented in Ref. [21]. The
asymmetry of the irreversible entropy production away
from criticality on either side of the critical point is a
consequence of the fact that the relative quench amplitude
j�� � �0j=�0 is larger for �0 < 1.
The figure on the right shows the irreversible entropy

production in a chain of N ¼ 10 000 spins at various
temperatures. As expected, the signature of quantum criti-
cality decreases at higher temperatures with the emergence
of thermal fluctuations. The source of irreversibility is
elucidated by manipulating the Tasaki-Crooks fluctuation
relation to obtain the expression �Sirr ¼

R
dWPFðWÞ�

log½PFðWÞ=PBð�WÞ� ¼ KðPFðWÞjjPBð�WÞÞ, where K
is the Kullback-Leibler relative entropy, measuring the
distance between two probability distributions. Intuitively,
this expression attributes the amount of irreversible entropy
production to the degree of uncertainty in distinguishing the
experimental data contained in the forward and backward
work distributions (see, e.g., Ref. [22]). Accordingly, as is
evident from Fig. 1, quantum criticality has the effect of
setting the thermodynamic arrow of time as the degree of
irreversibility grows with decreasing temperature.
As a final remark we note that the forward characteristic

function Eq. (2) has a similar form to the Loschmidt echo
[23]. This has been shown in previous work to be a good
indicator of phase transitions [24] and could be experimen-
tally measured using Ramsey interferometry [25].
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