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We provide quantitative bounds on the characterization of multiparticle separable states by states that

have locally symmetric extensions. The bounds are derived from two-particle bounds and relate to recent

studies on quantum versions of de Finetti’s theorem. We discuss algorithmic applications of our results, in

particular a quasipolynomial-time algorithm to decide whether a multiparticle quantum state is separable

or entangled (for constant number of particles and constant error in the norm induced by one-way local

operations and classical communication, or in the Frobenius norm). Our results provide a theoretical

justification for the use of the search for symmetric extensions as a test for multiparticle entanglement.
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Entanglement between two particles is a fundamental
resource in quantum communication theory, being of vital
importance in quantum teleportation [1], quantum key
distribution [2,3], as well as more exotic tasks such as
the simulation of noisy channels by noiseless ones [4,5].
The most famous criterion for deciding whether or not a
state is entangled is the Peres-Horodecki test [6,7]: it is
based on the observation that the partial transpose of a
separable state is positive semidefinite and hence, if the
partial transpose of a quantum state �AB is not positive
semidefinite, then �AB must be entangled. Unfortunately,
this criterion is only complete for two-by-two and two-
by-three dimensional systems [8].

A hierarchy of separability criteria that detects
every entangled state is the search for symmetric
extensions [9]. This hierarchy is based on the
observation that if �AB is separable, i.e., of the formP

ipij�iih�ijA � jc iihc ijB, then for every k, we can de-
fine the state

P
ipij�iih�ij�kA � jc iihc ijB which is mani-

festly symmetric under the permutation of the A systems
and extends the original state �AB [10]. Hence, if for some
k a given state �AB does not have an extension to k copies
of A that is symmetric under interchange of the copies of
A, then it must be entangled. The kth separability criterion
is thus the search for a symmetric extension to k copies of
A. Quantum versions of the famous de Finetti theorem
from statistics show that this hierarchy of criteria is com-
plete [11–15]—i.e., every entangled state fails to have a
symmetric extension for some k—and even provide quan-
titative bounds for the distance to the set of separable
states measured in the trace norm [16,17] (see Fig. 1).
Interestingly, these bounds can be improved if we add the
Peres-Horodecki test as has been shown in Refs. [18,19]
following a proposal to use the search for such extensions
by semidefinite programming as a test to detect bipartite
entanglement [9]. Whereas the algorithm works well in
practice, from the bounds one can only infer a runtime
exponential in the dimension the state, suggestively in

agreement with the well-known result that the separability
problem is NP hard [20,21].
In recent work jointly with Jon Yard, we have shown that

the algorithm runs in quasipolynomial time (even without
the Peres-Horodecki test) for constant error when one is
willing to consider the weaker one-way local operation and
classical communication (LOCC) norm [22–24]. The one-
way LOCC norm is an operationally defined norm giving
the optimal probability of distinguishing two two-particle
states by local operations and one-way classical commu-
nication. Locality restricted norms, such as the one con-
sidered here, may actually be regarded as the more relevant
norms in the distant laboratories paradigm, where Alice
and Bob each hold part of a state and are restricted in their
communication: a state that has a small distance to the set
of separable states in such a norm, namely, will behave just
like a separable state. This observation leads to a number
of unexpected consequences of our results ranging from
quantum data hiding to quantum complexity theory. It
further follows that the algorithm remains fast if the
Frobenius norm is considered instead. This provides a
geometric interpretation of the results since the Frobenius
norm is just the Euclidean norm when considering quan-
tum states as elements in a real vector space.
Following their work in the two-particle case, Doherty

et al. proposed a similar search for extensions in order to
detect multiparticle entanglement [25]. With this Letter we
provide a quantitative analysis of this proposal and prove
that this hierarchy provides a family of necessary and
sufficient conditions for multiparticle entanglement [26].
We do this by deriving a bound on the distance between
multiparticle states that have symmetric extensions and
multiparticle separable states in terms of the corresponding
two-particle bounds (Theorem 1). We illustrate the result
by considering the best known two-particle bounds
(Corollary 1). As in the two-particle case, the one-way
LOCC norm (and the Frobenius norm) result is shown to
imply a quasipolynomial-time algorithm for the detection
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of entanglement for a constant number of parties and for
constant error (Corollary 2). The use of the search for
symmetric extensions as multiparticle entanglement crite-
ria has therefore been given a theoretical underpinning. We
also show how our results can lead to a novel quantum
version de Finetti’s theorem in the one-way LOCC norm
that depends only logarithmically on the local dimension
(Corollary 3). This stands in sharp contrast to the trace
norm case, where the dependence on the local dimension is
at least linear [17].

Symmetric extensions.—We denote by A1;A2;���
Hilbert spaces of finite but possibly different dimensions
jAij and let SA1:A2:���:AN :

:¼ convfj�1ih�1jA1
� j�2i �

h�2jA2
� � � � j�Nih�NjAN

g be the set of separable states,

where conv denotes the convex hull. We also define the

convex sets of symmetrically extendible states Ek1;k2;���kN
A1:A2:���:AN

consisting of all �A1A2���AN
for which there is a state

�Sk1 ðA1ÞSk2 ðA2Þ���SkN ðANÞ with

�A1A2���AN
¼ tr

A
k1�1

1
A
k2�1

2
���AkN�1

N

�Sk1 ðA1ÞSk2 ðA2Þ���SkN ðANÞ:

Here, SkðAÞ denotes the symmetric subspace of Ak � A�k
and trAk�1 stands for the partial trace of all but one of the A
systems [27].

In order to measure distances between quantum states
we consider a norm k � k that is defined for all spaces of
linear operatorsLðA1 � � � � � ANÞ and that may depend on
the decomposition into tensor factors (here indicated by
colons) satisfying the following compatibility conditions:
for all finite dimensional A1; A2; � � � ; AN; A

0
1; A

0
2; � � � ; A0

N

and for all completely positive trace preserving maps
�i:LðAiÞ ! LðA0

iÞ we have
k�1 ��2 � � � � ��Nð�ÞkA0

1
:A0

2
:���:A0

N
� k � kA1:A2:���:AN

(1)

and

k � kA1���Aj:Ajþ1���AN
� k � kA1:���:Aj:Ajþ1:���:AN

: (2)

An example of a norm which satisfies the two conditions
is the trace norm which can be written in the form

kXk1 ¼ sup
0�M�1

tr½ð2M� 1ÞX�:

Note that it is independent of the split of the total Hilbert
space into tensor products. A second norm satisfying the
conditions is the one-way LOCC norm, defined in analogy
with the trace norm as

kXkLOCC!ðA1:���:ANÞ :¼ sup
M2LOCC!ðA1:���:ANÞ

tr½ð2M� 1ÞX�;

where LOCC!ðA1:A2: � � � :ANÞ is the convex set of matri-
ces 0 � M � 1 such that there is a two-outcome measure-
ment fM; 1�Mg that can be realized by one-way LOCC
from A1 to A2 to A3 and so on until AN (see Fig. 2). Note

that the one-way LOCC norm does depend on the tensor
product split.
We say that � � �ðjAj; jBj; kÞ is a two-particle bound for

a norm k � k if for all �AB 2 Ek;1
A:B there exists � 2 SA:B

with (see Fig. 1)

k�� �kA:B � �ðjAj; jBj; kÞ:
Note that �ðjAj; jBj; kÞ does not equal �ðjBj; jAj; kÞ in
general. In fact, all known bounds either depend only on
jAj or only on jBj, the dimensions of A and B, respectively.
Multiparticle entanglement.—We derive two results that

quantify the closeness of a separable state to a symmetri-
cally extendible multiparticle state in terms of two-particle
bounds. The first result is tailored to a two-particle bound
that only depends on jAj; the second depends only on jBj.
We disregard nonappearing dimensions by setting them to
infinity.
Theorem 1.—Let k � k be a norm that satisfies Eqs. (1)

and (2), assume that �ðjAj; jBj; kÞ is a two-particle bound

for k � k, and let � 2 Ek1;k2;...;kN
A1:A2:���:AN

. Then there exists � 2
SA1:A2:���:AN

with

(2,1)-extendible states

( ,1)-extendible states
=separable states

(3,1)-extendible states

  (k,1)-extendible states

all quantum states

(|A|,|B|,k)

FIG. 1. Illustration of the hierarchy for two particles.

FIG. 2. 1
4 k�� �kLOCC! equals the maximal bias of correctly

distinguishing � from � by one-way LOCC, i.e., by a protocol
that first measures A1, then, depending on the outcome, measures
A2, and so on until AN has been measured, and that then makes a
guess as to which state has been prepared. Classical information
is indicated by double lines. Whereas restricting to one-way
LOCC measurements in general reduces the power to distinguish
quantum states [34–36], we remark that such measurements are
still powerful enough to distinguish any two orthogonal pure
states [37,38].
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k�� �kA1:A2:���:AN
� XN�1

i¼1

�ðjAij;1; kiÞ:

Furthermore there exists � 2 SA1:A2:���:AN
with

k�� �kA1:A2:���:AN
� XN�1

i¼1

�ð1; jAiþ1j; ‘iÞ;

in the case where ðk1; k2; � � � kN�1; 1Þ :¼
ð‘1‘2 � � � ‘N�1; ‘2‘3 � � � ‘N�1; � � � ; ‘N�1; 1Þ.

Proof.—For ease of notation we introduce kN :¼ 1 and
use SkN ðANÞ ¼ AN . By assumption there exists an exten-
sion �Sk1 ðA1ÞSk2 ðA2Þ���SkN ðANÞ of �A1A2���AN

. Since clearly

�A1S
k2 ðA2Þ���SkN ðANÞ 2 Ek1;1

A1:S
k2 ðA2Þ���SkN ðANÞ there exists a state

�A1S
k2 ðA2Þ���SkN ðANÞ of the form

�A1S
k2 ðA2Þ���SkN ðANÞ ¼

X
i1

pi1�
i1
A1

� �i1
Sk2 ðA2Þ���SkN ðANÞ;

such that

k�� �kA1:S
k2 ðA2Þ���SkN ðANÞ � �ðjA1j;1; k1Þ:

We now apply the same reasoning to each of the

�i1
Sk2 ðA2Þ���SkN ðANÞ and find that there are states

�i1
A2S

k3 ðA3Þ���SkN ðANÞ ¼
X
i2

pi2ji1�
i1i2
A2

� �i1i2
Sk3 ðA3Þ���SkN ðANÞ

satisfying

k�i1 � �i1kA2:S
k3 ðA3Þ���SkN ðANÞ � �ðjA2j;1; k2Þ:

We continue this way until

k�i1i2���iN�2 � �i1i2���iN�2kAN�1:S
kN ðANÞ � �ðjAN�1j;1; kN�1Þ

for

�i1i2���iN�2

AN�1S
kN ðANÞ ¼

X
iN�1

piN�1ji1i2���iN�2
�i1i2���iN�1

AN�1
� �i1i2���iN�1

SkN ðANÞ :

We now tensor �i1
A1

� �i1i2
A2

� � � � � �
i1i2���ij
Aj

to �
i1���ij
Ajþ1���AN

and

denote the state resulting from taking the convex combi-
nation with the distribution pi1���ijþ1

:¼pi1pi2ji1 ���pijji1���ij�1

by �j. By the above bounds, the monotonicity under com-
pletely positive trace preserving maps, and the triangle
inequality we find (for 0� j�N�2 where �0 :¼ �)

k�j � �jþ1kA1���Ajþ1:Ajþ2���AN
� �ðjAjþ1j;1; kjÞ: (3)

Then we convert all the bounds into the norm k�kA1:A2:���:AN

using Eq. (2). Finally, we use the triangle inequality in the
telescope estimate

k�0 � �N�1kA1:A2:���:AN
� XN�2

j¼0

k�j � �jþ1kA1:A2:���:AN
;

which together with Eq. (3) proves the first bound since
�N�1 is fully separable.
For the second bound note that by assumption

there exists an extension �Sk1 ðA1ÞSk1 ðA2Þ���SkN�1 ðAN�1ÞAN
of

�A1A2���AN
. Since clearly �BN�1AN

2 E‘N�1;1
BN�1AN

, where

BN�1 :¼Sk1=‘N�1ðA1ÞSk2=‘N�1ðA2Þ���SkN�2=‘N�1ðAN�2ÞAN�1;

there exists a state

�BN�1AN
¼ X

iN�1

piN�1
�iN�1

BN�1
� �iN�1

AN

satisfying

k�� �kBN�1:AN
� �ð1; jANj; ‘N�1Þ:

We then repeat the same argument for the states �
iN�1

BN�1

thereby decoupling system AN�1 from

BN�2 :¼ Sk1=ð‘N�2‘N�1ÞðA1ÞSk2=ð‘N�2‘N�1ÞðA2Þ
� � � SkN�3=ð‘N�2‘N�1ÞðAN�3ÞAN�2:

We continue this way until we have decoupled A2 from
B1 :¼ A1. We then combine all the estimates as we had
done in the first proof and obtain the claim. j
The following corollary is obtained by inserting the trace

norm quantum de Finetti theorem from Theorem II.8’ of
Ref. [17] into the first bound and by inserting the one-way
LOCC norm bound from Ref. [22] into the second bound
of Theorem 1.

Corollary 1.—For all � 2 Ek1;...;kN
A1:A2:���:AN

there exists � 2
SA1:A2:���:AN

with

k�� �k1 � 4
XN�1

i¼1

jAij
ki

:

Furthermore, for all � 2 Ek1;...;kN
A1:A2:���:AN

there exists � 2
SA1:A2:���:AN

with

k�� �kLOCC!ðA1:A2:���:ANÞ �
1

8 ln2

XN�1

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logjAij

‘i

s
:

Note that we recover the first part of the statement
(Theorem 1 and Ref. [9]) when we let all ki approach
infinity. Examples of extendible states that saturate the
two particle bounds used here can be found in
Refs. [22,28], respectively. By carefully going through
the proof of Theorem 1 one can check that by demanding
that � satisfy the Peres-Horodecki test, the first bound

improves to OðPN�1
i¼1

jAij2
k2i

Þ as Refs. [18,19] can be applied.

Similarly one can check that (up to a loss of 1ffiffiffiffiffiffi
153

p )

the second bound holds for the Frobenius norm due
to Ref. [29], even though the Frobenius norm violates
Eq. (1).
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Whereas the first result on the trace norm may provide a
useful characterization of multiparticle separable states
that is applicable in a wide variety of situations, the second
result on the one-way LOCC norm is more specific, but
features an interesting exponential improvement with re-
spect to the dimension dependence. In particular, we will
now show that the one-way LOCC norm result implies that
detecting multiparticle separability is much more efficient
than what was previously anticipated. For this we set ‘i :¼

1
ð8 ln2Þ2 ðN � 1Þ2��2 logjAiþ1j. Then we search for an exten-

sion to �iS
kiðAiÞ with a semidefinite program. If we find

the extension, then we output separable, if not, we output
entangled. This algorithm solves the weak membership
problem for separability with error " correctly, since by
Corollary 1 the one-way LOCC norm distance is bounded
by " for extendible states. Since every separable state
has arbitrary extensions, an output of entangled will
always be correct. The runtime equals a polynomial in
the number of variables, which is smaller than
jANjjAN�1j‘N�1 � � � jA1j‘1‘2���‘N�1 ¼ expfO½ðN � 1Þ2N�1�
�2ðN�1Þ QN

i¼1 logjAij�g since jSkðAÞj � jAjk; the latter is a

good bound for large jAj, a regime in which we are
interested. Since a similar conclusion is true for the
Frobenius norm, we obtain the following corollary.

Corollary 2.—Deciding separability up to error ", in the
one-way LOCC or Frobenius norm can be done in time

exp½Oð"�2ðN�1ÞN2N�1
Q

N
i¼1 logjAijÞ�, i.e., in quasipolyno-

mial time for constant error and a constant number of
parties.

Quantum de Finetti theorem.—A quantum de Finetti
theorem is a statement about the approximation of a
permutation-invariant state �Ak , i.e., ½U�; �Ak� ¼ 0 8� 2
Sk, by convex combinations of identical tensor products
��k, so-called de Finetti states [11,13,15–17,30]. Apart
from their appeal as remarkable quantum analogues of de
Finetti’s theorem for exchangeable random variables,
quantum de Finetti theorems are important tools in the
context of mean-field theory [13], quantum cryptography
[30], and complexity theory [31].

Quantum de Finetti theorems have previously been
proven for the trace norm, where the best bounds are qua-
dratic in the local dimension. There also is a linear lower
bound on the dimension dependence [17] which marks an
important difference with classical range-independent de
Finetti theorems due to Diaconis and Freedman [32]. Since
in many applications the dimension dependence is a crucial
bottleneck in the applicability of quantum de Finetti theo-
rems, it could be very interesting if one could beat the linear
bound by using aweaker norm.Corollary 1 suggests that the
one-way LOCC norm may allow for a logarithmic dimen-
sion dependence and it is this result whichwewill explain in
the following. For this, let �ðA �AÞk be a state supported on the
symmetric subspace SkðA �AÞ that extends �Ak ( �A ffi A)
(Lemma II.5 of Ref. [17]). By Corollary 1 there exists a
separable state �ðA �AÞN with

jj�ðA �AÞN � �ðA �AÞN jjLOCC!ðA �A:���:A �AÞ �
ðN � 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

logjAj2p
k1=ð2NÞ :

Now we apply the dimension-independent de Finetti theo-
rem for separable states (Theorem 6 of Ref. [33]) to � and
conclude that there exists a de Finetti state �ðA �AÞn with

k�ðA �AÞn � �ðA �AÞnk1 � 2
n2

N
:

Using k ? kLOCC! � k ? k and tracing out the �A systemswe
find the following de Finetti type theorem which only
depends logarithmically on the local dimension.
Corollary 3.—Let n � N � k. For all permutation-

invariant states �Ak there exists a state �Ak ¼ P
ipi�

�k
A;i with

k�Ak � �AkkLOCC!ðA:A:���:AÞ � ðN � 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logjAjp
k

1
2N

þ 2
n2

N
:

Whereas arguably k has to be rather large for the bound
to be of any use (i.e., it decreases for N ¼ ffiffiffiffiffiffiffiffiffi

logk
p

and large
k), we feel that this result—by drastically breaking the
linear dimension barrier of the trace norm—may find
application in theoretical aspects of quantum information
theory and provide new insights into the study of quantum
de Finetti theorems.
Conclusion.—Fast algorithms for deciding the separa-

bility of quantum states are important both from a theo-
retical perspective in quantum information theory and from
the point of view of experimental work, where the proof of
a successful experiment often lies in the certification of
entanglement in the created multiparticle quantum state. In
this work we have shown that the detection of multiparticle
entanglement can be done much faster than previously
anticipated by providing new runtime bounds on the search
for symmetric extensions. We hope that this work fosters
further theoretical and experimental investigation into the
detection of multiparticle entanglement.
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