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A fundamental task in modern cryptography is the joint computation of a function which has two

inputs, one from Alice and one from Bob, such that neither of the two can learn more about the other’s

input than what is implied by the value of the function. In this Letter, we show that any quantum protocol

for the computation of a classical deterministic function that outputs the result to both parties (two-sided

computation) and that is secure against a cheating Bob can be completely broken by a cheating Alice.

Whereas it is known that quantum protocols for this task cannot be completely secure, our result implies

that security for one party implies complete insecurity for the other. Our findings stand in stark contrast to

recent protocols for weak coin tossing and highlight the limits of cryptography within quantum

mechanics. We remark that our conclusions remain valid, even if security is only required to be

approximate and if the function that is computed for Bob is different from that of Alice.

DOI: 10.1103/PhysRevLett.109.160501 PACS numbers: 03.67.Dd, 03.67.Hk

Traditionally, cryptography has been understood as the
art of ‘‘secret writing,’’ i.e., of sending messages securely
from one party to another. Today, the research field of
cryptography comprises much more than encryption and
studies all aspects of secure communication and computa-
tion among players that do not trust each other, including
tasks such as electronic voting and auctioning. Following
the excitement that the exchange of quantum particles may
allow for the distribution of a key that is unconditionally
secure [1,2], a level of security unattainable by classical
means, the question arose whether other fundamental cryp-
tographic tasks could be implemented with the same level
of security using quantum mechanical effects. For oblivi-
ous transfer and bit commitment, it was shown that the
answer is negative [3,4]. Interestingly, however, a weak
version of a coin toss can be implemented by quantum
mechanical means [5].

In this Letter, we study the task of secure two-party
computation. Here, two mistrustful players, Alice and
Bob, wish to compute the value of a classical deterministic
function f, which takes an input u from Alice and v from
Bob, in such a way that both learn the result of the
computation and that none of the parties can learn more
about the other’s input, even by deviating from the proto-
col. As our main result, we show that any quantum protocol
which is secure against a cheating Bob can be completely
broken by a cheating Alice. Formally, we design an attack
by Alice which allows her to compute the value of the

function f for all of her inputs (rather than only a single
one, which would be required from a secure protocol).
Our result strengthens the impossibility result for two-

sided secure two-party computation by Colbeck, where he
showed that Alice can always obtain more information
about Bob’s input than what is implied by the value of
the function [6]. In a similar way, we complement a result
by Salvail et al. [7] showing that any quantum protocol for
a nontrivial primitive necessarily leaks information to a
dishonest player. Our result is motivated by Lo’s impossi-
bility result for the case where only Alice obtains the result
of the function (one-sided computation) [8]. Lo’s approach
is based on the idea that Bob does not have any output;
hence, his quantum state cannot depend on Alice’s input.
Then, Bob has learned nothing about Alice’s input, and a
cheating Alice can therefore still change her input value
(by purifying the protocol) and thus cheat.
In the two-sided case, this approach to proving the

insecurity of two-party computation fails as Bob knows
the value of the function and has thus some information
about Alice’s input. In order to overcome this problem, we
develop a new approach. We start with a formal definition
of security based on the standard real–ideal-world para-
digm from modern cryptography. In our case of a classical
functionality, this definition guarantees the existence of a
classical input for Bob in the ideal world, even if he is, in
the real world, dishonestly purifying his steps of the pro-
tocol. Since real and ideal are indistinguishable for a secure
protocol and since a purification of the classical input
cannot be part of Bob’s systems, Alice can now obtain a
copy of this input by applying a unitary—constructed with
help of Uhlmann’s theorem—to her output registers and,
henceforth, break the protocol.
Wewish to emphasize that the above conclusion remains

valid if the protocol is not required to be perfectly secure
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(nor perfectly correct). More precisely, if the protocol is
secure up to a small error against cheating Bob, then Alice
is able to compute the value of the function for all of her
inputs with only a small error. Since the error is indepen-
dent of the number of inputs that both Alice and Bob have,
our analysis improves over Lo’s result in the one-sided
case. In fact, our results apply to this case since, more
generally, they remain true should Bob receive the output
of a function g, different from Alice’s f, as a careful look at
our argument reveals.

Security definition.—Alice and Bob, at distant locations
and only connected with a quantum channel, wish to
execute a protocol that takes an input u from Alice and
an input v from Bob and that outputs the value fðu; vÞ of a
classical deterministic function f to both of them. Since
Alice does not trust Bob, she wants to be sure that the
protocol does not allow him to extract more information
about her input than what is implied by the output value of
the function. The same should be true if Alice is cheating
and Bob is honest. Whereas for simple functions this
intuitive notion of security can be made precise by stating
a list of security requirements for certain quantum states
of Alice and Bob, such an approach seems very compli-
cated and prone to pitfalls for general functions f, in
particular, if we want to consider protocols that are only
approximately secure. We therefore follow the modern lit-
erature on cryptography where such situations have been in
the center of attention for many years (cf., zero knowledge,
composability) and where a suitable notion of security,
known as the real–ideal-world paradigm, has been firmly
established.

In this paradigm, we first define an ideal situation in
which everything is computed perfectly and securely and
call this the ideal functionality. Informally, a two-party
protocol is secure if it looks to the outside world just like
the ideal functionality it is supposed to implement. More
concretely, a protocol is deemed secure if for every adver-
sarial strategy, or real adversary, there exists an ideal
adversary interacting only with the ideal functionality
such that the execution of the protocol in the real world
is indistinguishable from this ideal world. If such a security
guarantee holds, it is clear that a secure protocol can be
treated as a call to the ideal functionality, and hence, it is
possible to construct and prove secure more complicated
protocols in a modular fashion. See Refs. [9–15] for further
information about this concept of security in the context of
classical and quantum protocols, respectively.

There exist different meaningful ways to make the above
informal notion of the real–ideal-world paradigm precise.
All these notions have in common that the execution of the
protocol by the honest and dishonest players is modeled by
a completely positive trace-preserving (CPTP) map.
Likewise, every ideal adversary interacting with the ideal
functionality is composed out of CPTP maps modeling the
pre- and postprocessing of the in- and outputs to the ideal

functionality (which is a CPTP map itself). A desirable
notion of security is the following: for every real adversary
there exists an ideal adversary such that the corresponding
CPTP maps are (approximately) indistinguishable. The
natural measure of distinguishability of CPTP maps in
this context is the diamond norm, since it can be viewed
as the maximal bias of distinguishing real and ideal world
by supplying inputs to the CPTP maps and attempting to
distinguish the outputs by measurements (i.e., by interact-
ing with an environment). This rather strong notion of
security naturally embeds into a composable framework
for security in which also quantum key distribution can be
proven secure (see, e.g., Ref. [16]).
Since our goal is the establishment of a no-go theorem,

we consider a notion of security which is weaker than the
above in two respects. First, we do not allow the environ-
ment to supply an arbitrary input state but only the purifi-
cation of a classical input (see definition of �UVR below),
and second, we consider a different order of quantifiers:
instead of ‘‘8 real adversary 9 ideal adversary8 input, the
output states are indistinguishable’’ as a security require-
ment we only require ‘‘8 real adversary 8 input 9 ideal
adversary, the outputs states are indistinguishable.’’ This
notion of security is closely related to notions of security
considered in Ref. [13,15] and is further discussed in the
Supplemental Material [17].
We will now give a formal definition of security.

Following the notation of Ref. [15], we denote by A and
B the real honest Alice and Bob and add a prime to denote

dishonest players A0, B0 and a hat for the ideal versions Â,

B̂. The CPTP map corresponding to the protocol for honest
Alice and dishonest Bob is denoted by �A;B0 . Both honest

and dishonest players obtain an input, in Alice’s case u
(in register U) and in Bob’s case v (in register V) drawn
from the joint distribution pðu; vÞ. The output state of
the protocol, augmented by the reference R, takes the
form idR � �A;B0 ð�UVRÞ, where �UVR is a purification ofP

u;vpðu; vÞjuihujUjvihvjV .
Since we are faced with the task of the secure evalu-

ation of a classical deterministic function, we con-
sider an ideal functionality F which measures the
inputs in registers ~U and ~V and outputs orthogo-
nal states in registers ~X and ~Y that correspond to the
function values. Formally, F ðjuihu0j ~Ujvihv0j ~VÞ :¼
�u;u0�v;v0 jfðu; vÞihfðu; vÞj ~Xjfðu; vÞihfðu; vÞj ~Y , where �
denotes the Kronecker delta function. When an ideal

honest Â and an ideal adversary B̂0 interact with the ideal
functionality, we denote the joint map by F Â;B̂0 :UV !
XY0 (see Fig. 1). Â just forwards the in- and outputs to and

from the functionality, whereas B̂0 pre- and postprocesses
them with CPTP maps �1

V! ~VK
and �2

K ~Y!Y0 resulting in a

joint map F Â;B̂0 ¼½id ~X!X��2
K ~Y!Y0 ��½F ~U ~V! ~X ~Y�idK��

½idU! ~U��1
V! ~VK

�, where � denotes sequential application

of CPTP maps.
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In the following, we let " � 0 and write � �" �
if Cð�;�Þ � ". Cð�;�Þ is the purified distance, defined

as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Fð�;�Þ2p

for Fð�;�Þ :¼ tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

p
�

ffiffiffiffi
�

pp
the fidelity.

We say that a (two-party quantum) protocol � for f is
"-correct if for any distribution pðu; vÞ of the inputs
½idR � �A;B�ð�UVRÞ �" ½idR �F Â;B̂�ð�UVRÞ and "-secure

against dishonest Bob if for any pðu; vÞ and for any real

adversary B0 there exists an ideal adversary B̂0 such that
½idR � �A;B00 �ð�UVRÞ �" ½idR �F Â;B̂0 �ð�UVRÞ. "-security

against dishonest Alice is defined analogously.
Since F is classical, we can augment it so

that it outputs ~v in addition. More precisely, we
define F aug: ~U ~V! ~X ~Y ~V by F augðjuihu0j ~Ujvihv0j ~VÞ :¼
�u;u0�v;v0 jfðu;vÞihfðu;vÞj ~Xjfðu;vÞihfðu;vÞj ~Yjvihvj ~V which

has the property that F ¼ tr ~V �F aug. For a concrete input

distribution we define �RX ~VY0 :¼ ½idR �F Â;B̂0;aug�ð�UVRÞ
which satisfies �RXY0 �" �RXY0 for �RXY0 :¼
½idR � �A;B0 �ð�UVRÞ if the protocol is secure against

cheating Bob. We call �RX ~VY0 a secure state for pðu; vÞ.
Main results.—The proofs of our main results build

upon the following lemma which constructs a cheating
strategy for Alice that works on average over the input
distribution pðu; vÞ.

Lemma.—If a protocol � for the evaluation of f is
"-correct and "-secure against Bob, then for all input
distributions pðu; vÞ there is a cheating strategy for Alice
such that she obtains ~v with some probability distribution
qð~vju; vÞ satisfying

P
u;v;~vpðu; vÞqð~vju; vÞ�fðu;vÞ;fðu;~vÞ �

1� 6". Furthermore, qð~vju; vÞ is almost independent
of u; i.e., there exists a distribution ~qð~vjvÞ such thatP

u;v;~vpðu; vÞjqð~vju; vÞ � ~qð~vjvÞj � 6".
Proof.—We first construct a ‘‘cheating unitary’’ T for

Alice and then show how Alice can use it to cheat
successfully.

Let Alice and Bob play honestly, but let them purify
their protocol with purifying registers X0

1 and Y0
1, respec-

tively. We assume without loss of generality that honest
parties measure their classical input, and hence, X0

1 and Y0
1

contain copies of u and v, respectively. We denote by
j�iRXX0

1
Y0
1
Y the state of all registers at the end of the pro-

tocol. Notice that tracing out X0
1 from j�iRXX0

1
Y0
1
Y results

in a state trX0
1
j�ih�jRXX0

1Y
0
1Y

¼ �RXY0
1Y

which is exactly the

final state when Alice played honestly and Bob played

dishonestly with the following strategy: he plays the honest
but purified strategy and outputs the purification of the
protocol (register Y0

1) and the output values fðu; vÞ (register
Y). His combined dishonest register is Y0 ¼ Y0

1Y. Since the
protocol is "-secure against Bob by assumption, there
exists a secure state �RX ~VY0 satisfying �RXY0 �" �RXY0 .
Let j�iRXP ~VY0 be a purification of �RX ~VY0 with purifying
register P. Note that j�iRXP ~VY0 is also a purification of
�RXY0 , this time with purifying registers P ~V. Recall that
j�iRXX0

1
Y0 purifies �RXY0 with purifying register X0

1. Since

�RXY0 �" �RXY0 we can use Uhlmann’s theorem [18] to
conclude that there exists an isometry T � TX0

1
!P ~V (with

induced CPTP map T � TX0
1
!P ~V) such that

½T X0
1
!P ~V � idRXY0 �ðj�ih�jRXX0

1
Y0 Þ �" j�ih�jRXP ~VY0 : (1)

We will now show how Alice can use T to cheat. Notice
that tracing outY0

1 from j�iRXX0
1
YY0

1
results exactly in the final

statewhenBob played honestly andAlice played dishonestly
with the following strategy: she plays the honest but purified
strategy and outputs the purification of the protocol
(register X0

1) and the output values fðu; vÞ (register X). She
then applies TX0

1
!P ~V , measures register ~V in the computa-

tional basis, and obtains a value ~v. It remains to argue that
Alice can compute fðu; vÞ with good probability based on
the value ~v that she has obtained from measuring register ~V.
Let MR ~VX be the CPTP map that measures registers R,

X, and ~V in the computational basis. Tracing over PY0 and
applying MR ~VX on both sides of Eq. (1), we find

½MRX ~V � trPY0 �ð½TX0
1
!P ~V � idRXY0 �ðj�ih�jRXX0

1
Y0 ÞÞ

�" ½MRX ~V � trPY0 �ðj�ih�jRXP ~VY0 Þ (2)

by the monotonicity of the purified distance under
CPTP maps. The right-hand side of Eq. (2) equalsP

u;v;~vpðu; vÞ~qð~vjvÞjuvihuvjRj~vih~vj ~V jfðu; ~vÞihfðu; ~vÞjX
for some probability distribution ~qð~vjvÞ that is conditioned
only on Bob’s input v, since j�iRXP ~VY0 is a purification of
the secure state�RX ~VY0 . The left-hand side of Eq. (2) equalsP

u;v;~v;xpðu;vÞqð~vju;vÞjuvihuvjRj~vih~vj ~Vrðxju;v; ~vÞjxihxjX
for some conditional probability distributions qð~vju; vÞ
and rðxju; v; ~vÞ. Because of the correctness of the protocol,
this state is "-close to
X

u;v;~v

pðu; vÞ �qð~vju; vÞjuvihuvjRj~vih~vj ~V jfðu; vÞihfðu; vÞjX;

(3)

for some conditional probability distribution �qð~vju; vÞ.
Noting that therefore also pð	; 	Þqð	j	; 	Þ and pð	; 	Þ �qð	j	; 	Þ
(when interpreted as quantum states) are "-close in purified
distance, we can replace pð	; 	Þ �qð	j	; 	Þ in Eq. (3) by
pð	; 	Þqð	j	; 	Þ increasing the purified distance to the left-
hand side of Eq. (2) only to 2". Putting things together,
Eq. (2) implies

FIG. 1 (color online). Illustration of the security definition. A
protocol is secure against Bob if the real protocol (left) can be
simulated as an interaction with the ideal functionality F (right).
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X

u;v;~v

pðu;vÞqð~vju;vÞjuvihuvjRj~vih~vj ~V jfðu;vÞihfðu;vÞjX

�3"

X

u;v;~v

pðu;vÞ~qð~vjvÞjuvihuvjRj~vih~vj ~V jfðu; ~vÞihfðu; ~vÞjX:

Sandwiching both sides with tr½Z	�, where Z ¼P
u;v;~vjuvihuvjRj~vih~vj ~V jfðu; ~vÞihfðu; ~vÞjX, we find the first

claim since the purified distance of two distributions upper
bounds their total variation distance and since the latter
does not increase under tr½Z	�. The second claim follows
similarly by tracing out register X from the last displayed
equation. j

Applying the lemma to the uniform distribution we
immediately obtain our impossibility result for perfectly
secure protocols.

Theorem 1.—If a protocol � for the evaluation of f is
perfectly correct and perfectly secure (" ¼ 0) against
Bob, then, if Bob holds input v, Alice can compute
fðu; vÞ for all u.

We note that this notion of insecurity implies that Alice
can completely break the security for nontrivial functions f.

Proof. Letting pðu; vÞ ¼ 1
jUjjVj and " ¼ 0 in the lemma

results in the statement that if Alice has input u0, then she
will obtain ~v from the distribution qð~vju0; vÞ which equals
~qð~vjvÞ. But since also qð~vju; vÞ ¼ ~qð~vjvÞ for all u, we
have 1

jUjjVj
P

u;v;~vqð~vju0; vÞ�fðu;vÞ;fðu;~vÞ ¼ 1. In other words,

all ~v that occur (i.e., that have ~qð~vjvÞ> 0) satisfy for all u,
fðu; vÞ ¼ fðu; ~vÞ. Alice can therefore compute the func-
tion for all u. j

The impossibility result for the case of imperfect proto-
cols is also based on the lemma but requires a subtle swap
in the order of quantifiers (from ‘‘8 input 9 ideal adver-
sary’’ to ‘‘9 ideal adversary 8 input’’) which we achieve
by use of von Neumann’s minimax theorem.

Theorem 2.—If a protocol � for the evaluation of f is
"-correct and "-secure against Bob, then there is a cheating
strategy for Alice (where she uses input u0 while Bob
has input v) which gives her ~v distributed according
to some distribution Qð~vju0; vÞ such that for all u:
Pr~v
Q½fðu; vÞ ¼ fðu; ~vÞ� � 1� 28".

Proof.—The argument is inspired by Ref. [19]. For a
finite set S, we denote by �ðSÞ the simplex of probability
distributions over S. Denote by W the set of pairs (u, v).
Consider a finite "-net D of �ðW Þ in total variation
distance and to each distribution in D the corresponding
cheating unitary T constructed in the proof of the lemma.
We collect all these unitaries in the (finite) set E and
assume that T determines p uniquely, as we could include
the value p into T. For each such T, let qð~vju; v; TÞ and
~qð~vjv; TÞ be the distributions from the lemma. Define the
payoff function gðu; v; TÞ :¼ P

~vqð~vju; v; TÞ�fðu;vÞ;fðu;~vÞ �P
~vjqð~vju; v; TÞ � ~qð~vjv; TÞj. The lemma then yields

1� 12" � minp2DmaxT2E
P

u;vpðu; vÞgðu; v; TÞ which

is at most 2"þminp02�ðW ÞmaxT2E
P

u;vp
0ðu;vÞgðu;v;TÞ,

since replacing p by p0 incurs only an overall change in

the value by 2" [as �1 � gðu; v; TÞ � 1]. By von
Neumann’s minimax theorem, this last term equals
2"þmaxp002�ðEÞminðu;vÞ2W

P
Tgðu; v; TÞp00ðTÞ [20].

Hence, we have shown that there is a strategy for
Alice, where she chooses her cheating unitary T with
probability p00ðTÞ, such that (for some "1 þ "2 � 14")
for all u, v,

X

~v

Qð~vju; vÞ�fðu;vÞ;fðu;~vÞ � 1� "1 (4)

and
P

~vjQð~vju; vÞ � ~Qð~vjvÞj � P
~v;TpðTÞjqð~vju; v; TÞ �

~qð~vjv; TÞj � "2, where Qð~vju; vÞ :¼ P
TpðTÞqð~vju; v; TÞ

and ~Qð~vjvÞ :¼ P
TpðTÞ~qð~vjv; TÞ. This implies that for

all u, v,
P

~vjQð~vju0; vÞ �Qð~vju; vÞj � 2"2. Combining
this inequality with Eq. (4), we find for all u, v,P

~vQð~vju0; vÞ�fðu;vÞ;fðu;~vÞ � 1� "1 � 2"2 � 1� 28". j

One might wonder whether Theorem 2 can be strength-
ened to obtain, with probability 1�Oð"Þ, a ~v such
that for all u: fðu;vÞ¼fðu;~vÞ. It turns out that this depends
on the function f: when f is equality EQðu; vÞ ¼ 1 iff u ¼
v] and inner product [IPðu;vÞ¼P

iui 	vimod2], the
stronger conclusion is possible. However, for disjointness
[DISJðu; vÞ ¼ 0 iff 9 i : ui ¼ vi ¼ 1] such a strengthening
is not possible showing that our result is tight in general.
For EQ, we reason as follows. Set u ¼ v in

Theorem 2. Alice is able to sample a ~v such
that

P
~vQð~vju0; vÞ�EQðv;vÞ;EQðv;~vÞ � 1 � 28". Since

�EQðv;vÞ;EQðv;~vÞ ¼ 1 iff v ¼ ~v, Qðvju0; vÞ � 1� 28".
When f is IP, we pick u uniform at random and
obtain

P
~vQð~vju0;vÞð2�n

P
u�IPðu;vÞ;IPðu;~vÞÞ�1�28". Using

2�n
P

u�IPðu;vÞ;IPðu;~vÞ¼1 if ~v¼v, and 1
2 if ~v � v, we find

Qðvju0; vÞ þ 1
2 ½1�Qðvju0; vÞ� � 1� 28", which im-

plies Qðvju0; vÞ � 1� 56". Interestingly, for DISJ such
an argument is not possible. Assume that we have a
protocol that is "-secure against Bob. Bob could now
run the protocol normally on strings v with Hamming
weight jvj � n=2, but on inputs vwith jvj> n=2 he could
flip, at random,

ffiffiffi
n

p
of v’s bits that are 1. It is not hard to

see that this new protocol is still "-secure and "þ
Oð 1ffiffi

n
p Þ-correct. The loss in the correctness is due to the

fact that, on high Hamming–weight strings, the protocol
may, with a small probability, not be correct. On the other
hand, on high Hamming–weight inputs, the protocol can
not transmit or leak the complete input v to Alice, simply
because Bob does not use it.
We thank Ivan Damgård, Frédéric Dupuis, Louis Salvail,

Christopher Portmann, and Renato Renner for valuable
discussions and an anonymous referee for suggesting an
example presented in the Supplemental Material. M. C. is
supported by the Swiss National Science Foundation
(Grants No. PP00P2_128455 and No. 20CH21_138799),
the NCCR ‘‘Quantum Science and Technology,’’ and the
German Science Foundation (Grant No. CH 843/2-1). C. S.
is supported by a NWOVeni grant. H. B. was supported by
an NWO vici grant and by EU project QCS.

PRL 109, 160501 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

19 OCTOBER 2012

160501-4



[1] C. H. Bennett and G. Brassard, in Proceedings of IEEE
International Conference on Computers, Systems, and
Signal Processing (IEEE, New York, 1984), p. 175.

[2] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[3] H.-K. Lo and H. F. Chau, Phys. Rev. Lett. 78, 3410 (1997).
[4] D. Mayers, Phys. Rev. Lett. 78, 3414 (1997).
[5] C. Mochon, arXiv:0711.4114.
[6] R. Colbeck, Phys. Rev. A 76, 062308 (2007).
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