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Analytic expressions that describe Casimir interactions over the entire range of separations have been

limited to planar surfaces. Here we derive analytic expressions for the classical or high-temperature limit

of Casimir interactions between two spheres (interior and exterior configurations), including the sphere-

plane geometry as a special case, using bispherical coordinates. We consider both Dirichlet boundary

conditions and metallic boundary conditions described by the Drude model. At short distances, closed-

form expansions are derived from the exact result, displaying an intricate structure of deviations from the

commonly employed proximity force approximation.
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The collective action of fluctuation ‘‘van der Waals’’
forces between individual atoms leads to forces between
macroscopic surfaces [1,2]. The fluctuations can be of
thermal [3] and/or quantum [4] nature. An important char-
acteristic of these forces is their nonadditivity, which
complicates the study of Casimir interactions in the ther-
modynamic limit involving a macroscopic number of par-
ticles. An important exception is the interaction of planar,
parallel surfaces where symmetry allows for an exact
solution, the so-called Lifshitz formula [5], which is a
landmark in the physics of fluctuation forces. More com-
plicated shapes have been studied at sufficiently short
surface separations by the proximity force approximation
(PFA) that is based on the Lifshitz formula, treating cur-
vature by summing over planar surface elements [6]. The
thermal Casimir interaction between spherical particles in
a critical fluid has been computed by using conformal
invariance for nearly touching and widely separated parti-
cles [7]. More recently, a number of analytical and numeri-
cal approaches have been developed to deal with the
nonadditivity, most notably implementations of concepts
from scattering theory [8–10]. However, it remains unclear
to what extent and precision these approaches can handle
the practically important limit of short distances. Attempts
to obtain analytic predictions beyond the PFA have been
limited to computations in first-order corrections from a
gradient expansion [11–13].

The difficulty to compute deviations from the simple
PFA can be traced back to the long-range nature of fluc-
tuation forces which is poorly treated by the PFA. With
increasing spatial dimensions, fluctuations decay more
strongly, and the PFA is expected to become more reliable.
The situation resembles that in statistical mechanics when
phase transitions are studied by mean field theory, treating
fluctuations poorly. In this context, the exact solution of

the two-dimensional Ising model [14] helped in the under-
standing of phase transitions and inspired several develop-
ments in the theory of critical phenomena and related
fields. This demonstrates the importance of exact solutions
for a better understanding of complex phenomena. In
particular, several forms for nonadditivity-induced devia-
tions from the PFA have been hypothesized before,
depending on boundary conditions and temperature
[9,15,16]. Here we derive an exact solution for the inter-
action between spheres of different radii that displays a
much richer structure for the Casimir interaction in the
high-temperature limit than previously assumed.
In this Letter, we obtain analytic expressions for the

high-temperature limit of the Casimir interactions between
two spheres (interior and exterior configurations), includ-
ing the sphere-plane geometry as a special case. We con-
sider both a scalar field with Dirichlet boundary conditions
and metallic boundary conditions described by the Drude
model. The key tool of our approach is a bispherical
coordinate system [17], which allows for a simple solution
of the scattering problem of two spheres in the static limit
(Laplace equation). The high-temperature sphere-plate
problem has been analyzed before in the large-distance
limit [18] and by large-scale numerics at short distances,
including up to 5000 partial wave orders [15]. Our exact
solution is universal, i.e., material independent, and dis-
plays full agreement with these two limiting cases. We
derive from the exact result a closed-form short-distance
expansion that reveals an intricate structure of deviations
from the PFA. It turns out that, for Dirichlet boundary
conditions, the classical Casimir force can be expanded
as a Laurent series for small surface-to-surface separations
L. For Drude metallic boundary conditions, the structure of
the corrections to PFA is more complicated than suspected
before [15], as it involves a double logarithm of L, as well
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as powers of lnL multiplied by powers of L. In both cases
the leading correction to the PFA energy is represented by a
term proportional to lnL, with a common coefficient that
had been computed earlier [11] by using a recently pro-
posed gradient expansion of the Casimir energy [12,13].
However, for experimentally accessible separations, the
interaction of Drude metals is dominated entirely by the
double logarithmic term.

Geometry, coordinates, and eigenfunctions.—We
consider two spheres of radii R1 and R2 with surface-to-
surface distance L. This geometry is conveniently parame-
trized in bispherical coordinates (�, �, ’) [17], defined by
ðx;y;zÞ ¼ aðsin�cos’;sin�sin’;sinh�Þ=ðcosh�� cos�Þ,
where z ¼ �a are the foci of the two spheres defined by
� ¼ �1 > 0 and � ¼ �2 < 0, respectively; see Fig. 1.
The spheres have radii R1 ¼ a= sinh�1 and R2 ¼ �a=
sinh�2 and distances L1 ¼ a coth�1 and L2¼�acoth�2

from the origin. The center-to-center distance is d ¼ L1 þ
L2. It is useful to express the �� in terms of the natural
geometrical scales: �1 ¼ arccosh�1, �2¼�arccosh�2

with ��¼½L2þ2ðLþR�ÞðR1þR2Þ�=½2R�ðLþR1þR2Þ�.
We are interested in the classical Casimir interaction which
is determined by the scattering of the spheres at zero
frequency and is given by the Laplace equation. The latter
is separable in bispherical coordinates, and its Green’s
function can be expanded as G0ð�;�;’;�0;�0;’0Þ¼P1

l¼0

P
l
m¼�l�

reg
lm ð�<;�;’Þ�out�

lm ð�>;�
0;’0Þ, where �<ð>Þ

is the smaller (larger) of � and �0 and the regular and
outgoing eigenfunctions are

�
reg=out
lm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh�� cos�

að2lþ 1Þ

s
Ylmð�;’Þe�ðlþ1=2Þ� (1)

for l � 0, m ¼ �l; . . . ; l. Scattering solutions for various
boundary conditions can be expanded in these eigenfunc-
tions, leading to the zero-frequency (static) scattering am-

plitude Tð�Þ
lml0m0 of sphere � by which we denote the matrix

elements of the operator T̂ð�Þ in the bispherical basis. The
Casimir energy is expressed in the scattering approach [8]
in terms of the scattering amplitudes and translation
operators that translate the scattering solution from the
coordinate of one object to the one of the other object.
Here, for both spheres the scattering amplitude is ex-
pressed in the same bispherical coordinate system and
hence the translation operators become the identity opera-
tors, yielding for the classical Casimir energy (or zeroth-
order Matsubara term)

E ¼ kBT

2
ln det½1� N̂� with N̂ ¼ T̂ð1ÞT̂ð2Þ: (2)

It is important to notice that the energy depends only on the
equivalence class ½½N�� formed by all matrices that repre-

sent the operator N̂; i.e., two elements N and MNM�1 of
the class differ by an (invertible) similarity transformation
M. In the following, we denote by ½½. . .�� the equivalence
class of the matrix enclosed by the brackets.
Dirichlet boundary conditions.—The scattering ampli-

tudes for Dirichlet boundary conditions �ð� ¼ ��Þ ¼ 0
on the spheres follows from Eq. (1) [8]. They assume the

simple diagonal and m-independent form Tð�Þ
lml0m0 ¼

� exp½�ð2lþ 1Þ����ll0�mm0 with � for � ¼ 1 and þ
for � ¼ 2. Hence, the determinant in Eq. (2) can be easily
computed, and we get for the classical Casimir energy of
two Dirichlet spheres the exact result

EðDÞ ¼ kBT

2

X1
l¼0

ð2lþ 1Þ ln½1� Z2lþ1�; (3)

which depends only via the single variable Z ¼
½�1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
1 � 1

q
��1½�2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
2 � 1

q
��1 on the geometrical

scales. For jZj< 1, including the range of physically

meaningful parameters, the energy EðDÞ is an analytic
function [19]. Large distances L correspond to small Z
with Z ¼ R1R2=L

2 þOðL�3Þ and small distances to Z

close to unity with Z ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L=R1 þ 2L=R2

p þOðLÞ.
We note that the configuration of two spheres with one

(R1) inside the other (R2) [20,21] can be computed exactly
by the same method. The classical energy is given again by

Eq. (3) but now with Z¼½�2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
2�1

q
�=½�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
1�1

q
�

with �1¼½�L2þ2ðLþR1Þð�R1þR2Þ�=½2R1ð�L�R1þ
R2Þ�>�2¼½L2þ2ð�LþR2Þð�R1þR2Þ�=½2R2ð�L�R1þ
R2Þ�, where L is the closest surface-to-surface separation
of the spheres so that their centers have a distance

F’ C’C F L

R2

z=-a z=a

z

x

FIG. 1. Geometry of two spheres and a sphere plate. Shown
are the centers (C, C0) of the spheres and their foci (F, F0). The
dashed curves correspond to curves of constant bispherical
coordinate � with � ¼ ��, ��=2, ��=10, ��=20 with
the upper (lower) sign for z < 0 (z > 0), beginning with the
smallest sphere.
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d ¼ R2 � R1 � L > 0. For two concentric spheres, one
has Z ¼ R1=R2.

Drude model.—In general, a Drude metal has to be
described within electromagnetic scattering theory.
However, in the classical limit, it can be shown that only
the electric or TM modes contribute to the Casimir energy
[18]. We shall use this observation below to map the
interaction of Drude metals to a scalar field problem that
is similar to the one with Dirichlet conditions. To simplify
notations, we focus here on the sphere-plate geometry
(with the sphere described by � ¼ �1 > 0). When the

operator N̂ that yields the classical energy for the Drude
model is expressed in a spherical wave basis with C as the
origin (see Fig. 1), it has the form [18]

N̂ ¼
�� ðlþ l0Þ!

ðlþmÞ!ðl0 �mÞ! ðZþ Z�1Þ�l�l0�1�mm0

��
; (4)

where we used that R=ðLþ RÞ ¼ 2=ðZþ 1=ZÞ for a plate
and a sphere of radius R. The same matrix is obtained for a
scalar field with Dirichlet conditions but with one impor-
tant difference: While in the Dirichlet case monopoles with
l ¼ 0 are included, in the Drude case monopoles are
excluded, since there are no corresponding spherical vector
waves. Physically, this feature is a consequence of the fact
that an isolated compact object has zero total charge, i.e.,
no monopole. The next important observation is that a
given spherical multipole of order (l, m) decomposes into
infinitely many bispherical multipoles (l0, m) with m con-
served, and, hence, in the bispherical basis the difference
between Dirichlet and Drude conditions is more complex.
Since monopoles l ¼ 0 occur only in the sector for m ¼ 0,
it is sufficient to reconsider the part of the energy coming
from m ¼ 0 modes and to transfer the Dirichlet energy
unchanged for m � 0, giving the classical Casimir energy
for the Drude case

EðDrÞ ¼ EðDrÞ
m¼0 þ

kBT

2

X1
l¼1

2l lnð1� Z2lþ1Þ; (5)

where EðDrÞ
m¼0 is given by Eq. (2) with N̂ from Eq. (4) with

m ¼ 0 and restricted to l, l0 � 1, the equivalence class of

which we denote by N̂0 in the following. To compute the
determinant in Eq. (2), we perform two transformations on

the matrix that represents N̂0: (i) a translation from the
spherical wave basis SC with origin C to a spherical wave
basis SF with origin F—see Fig. 1; (ii) a conversion from
the basis SF to the bispherical wave basis BSF with the
same origin F. The translation (i) over the distance ZR
corresponds to a similarity transformation with a matrix
which has nonzero elements only for l � l0 � 1, given by

V SC!SF
ll0 ðZRÞ ¼ ðZRÞl�l0

ðl� l0Þ!
l!

l0!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l0 þ 1

2lþ 1

s
:

The inverse of this matrix is obtained by ZR ! �ZR.

After this transformation, we can write N̂0 as

N̂0 ¼
2
64

�ð�1ÞlZlþl0þ1 if l > l0�
l0!

l!ðl0�lÞ! � ð�1Þl
�
Zlþl0þ1 if l � l0

2
64

3
75
3
75: (6)

The conversion (ii) corresponds to a similarity transforma-
tion with a matrix which has nonzero elements only for
l0 � l � 1, given by

V SF!BSF
ll0 ¼ ð�1Þlffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2lþ 1
p

�
R

�
1

Z
� Z

��
lþ1=2 l0!

l!ðl0 � lÞ! :

With this transformation, the equivalence class can be
expressed as

N̂ 0 ¼ ½½Z2l0þ1ð�ll0 þ ð1� Z2Þð1� Z2l0 ÞÞ��: (7)

The latter expression allows for a direct computation of

detð1� N̂0Þ. The first part in Eq. (7) is diagonal and can be
easily factorized so that it yields a contribution ðkBT=2Þ�P1

l¼1 lnð1� Z2lþ1Þ to the energy EðDrÞ
m¼0. The second part in

Eq. (7) depends only the column index l0 and hence is a
matrix with equal rows. For a matrix A of this type, one has
detð1� AÞ ¼ 1� tr A. Hence the contribution of the sec-
ond part in Eq. (7) to the energy is given by the trace of this
part divided by 1� Z2lþ1 due to the factorization of the

first part of 1� N̂0. Combining the two parts from Eq. (7)
with Eq. (5), we obtain the following exact expression for
the classical Casimir energy of a Drude sphere and plate:

EðDrÞ ¼ kBT

2

�X1
l¼1

ð2lþ 1Þ lnð1� Z2lþ1Þ

þ ln

�
1� ð1� Z2ÞX

1

l¼1

Z2lþ1 1� Z2l

1� Z2lþ1

��
: (8)

Applying similar arguments as in the Dirichlet case, it

can again be shown that EðDrÞ is an analytic function for
jZj< 1. We note that the effect of eliminating monopole
fluctuations from the energy for Dirichlet conditions is not

only a sum starting at l ¼ 1 in EðDÞ but the occurrence of a
second logarithmic term. This is a consequence of the
coupling of monopoles to higher-order multipoles.
Expressions at short distances.—With exact expressions

for the Casimir energies in the Dirichlet and Drude model
available, one can compute explicitly the interaction in the
experimentally important limit of short distances L & R.
Since this limit corresponds to Z close to unity, we com-
pute the series in Eqs. (3) and (8), using the Abel-Plana
formula [2]. We set Z ¼ expð��Þ and expand for small

�, where � ¼ lnð1þ ‘þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð2þ ‘Þp Þ, ‘ ¼ L=R, in the

sphere-plate geometry. For Dirichlet conditions, we obtain
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EðDÞ ¼ kBT

2

�
� �ð3Þ

2

1

�2
þ 1

12
ln�þ 1

8
� 	0 � 7

2880
�2

� 31

725 760
�4 þOð�6Þ

�
(9)

with the constant 	0 ¼ 0:174 897 that is given by an
integral [22], and for the Drude model we get

EðDrÞ ¼ EðDÞ þ kBT

2

�
lnð	1 � ln�Þ þ 1

6

�	2 þ ln�

�	1 þ ln�
�2

� 1

180

	3 � 	4 ln�þ ln2�

ð�	1 þ ln�Þ2 �4 þOð�6Þ
�
; (10)

where the constants 	1 ¼ 1:270 362, 	2 ¼ 1:353 69,
	3 ¼ 1:594 09, and 	4 ¼ 2:511 53 are given by integrals
that can be easily computed numerically. We used � as
the variable for the expansion, since it provides a very
accurate result at even larger distances; see Fig. 2.
A general feature of both the Dirichlet and Drude en-
ergies is their dependence on only ln� and even powers
of �. This shows that the energies depend only on ln‘
and integer powers of ‘. When the force for the Dirichlet

case is expanded in ‘, it becomes a Laurent series
starting with 1=‘2; i.e., there are no logarithmic terms
for the force. For the Drude model, there are logarithmic
terms in the force, and the most convenient form to
express the short-distance expansion appears to be the
one in Eq. (10). The leading correction to the PFA is the
same term 	 ln� in both models. However, at realistic
distances, the double logarithmic term in Eq. (10) domi-
nates, and therefore the two models show rather distinct
behavior; see Fig. 2.
It is instructive to discuss the different behavior of the

classical Casimir energies for Dirichlet and Drude
boundary conditions. For large separations, the interac-
tions display different asymptotic behaviors for the two
boundary conditions. In the experimentally most relevant
sphere-plate geometry Eq. (3) predicts the known 1=‘
falloff rate for the Dirichlet energy, while in the Drude
case Eq. (8) gives the characteristic 1=‘3 decay [23]. The
slower decay rate in the Dirichlet case results from
monopole contributions that are absent in the Drude
case. While a Dirichlet scalar field is in general not
expected to describe the Casimir interaction between
metals, in the high-temperature limit the difference be-
tween the two universal interactions for Dirichlet and
Drude conditions suggests an interesting physical inter-
pretation. In fact, the high-temperature limit of the
Casimir interaction provides the dominant contribution
to the full quantum Casimir interaction at finite tempera-
tures in the limit of sufficiently large separations [1,5].
To understand if the Dirichlet (1=‘) or Drude (1=‘3)
decay describes experiments with conductors at large
distances, one must bear in mind that the conductors
used in Casimir force measurements are always con-
nected to a charge reservoir to compensate stray charges
that might otherwise be present on the surfaces. In the
static limit, the surface electric potential of such a con-
ductor is constant (Dirichlet boundary conditions), and
their total charge can fluctuate. In contrast, Drude me-
tallic boundary conditions instead describe ungrounded
charge-neutral conductors. From this we conclude that
the quantum Casimir force between grounded conductors
at finite temperatures should decay according to the
Dirichlet case at large distances, since the energy is
than dominated by the lowest Matsubara mode, i.e., the
classical energy [1,5]. To discriminate between the
asymptotic 1=‘ and 1=‘3 decay, it is necessary to con-
sider sphere-plate separations comparable to the sphere
radius or larger. Interestingly, our short-distance expan-
sions in the classical limit suggest a distinct behavior
due to grounding at even shorter separations which,
however, is certainly modified due to quantum
corrections.
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FIG. 2 (color online). Deviations from proximity force
approximation in the sphere-plate geometry, measured by
the function 
ð‘Þ defined by EðDÞ=ðDrÞ ¼ ��ð3ÞkBT=8½1=‘þ

ðDÞ=ðDrÞð‘Þ� with ‘ ¼ L=R. Shown are the exact results for
Dirichlet conditions [Eq. (3)] and the Drude model [Eq. (8)] as
solid lines and the short-distance expansions of Eqs. (9) and (10),
as dashed lines as a function of the logarithm (with base 10) of ‘.
Note that 
ðDÞ > 0 and 
ðDrÞ < 0 in the shown range. The inset
shows the logarithmic relative difference between the exact
result 
exact from Eqs. (3) and (8), and the 
 obtained from
the short-distance expansions of Eqs. (9) and (10).
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