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We simulate the nonlocal Stokesian hydrodynamics of an elastic filament which is active due a

permanent distribution of stresslets along its contour. A bending instability of an initially straight filament

spontaneously breaks flow symmetry and leads to autonomous filament motion which, depending on

conformational symmetry, can be translational or rotational. At high ratios of activity to elasticity, the

linear instability develops into nonlinear fluctuating states with large amplitude deformations. The

dynamics of these states can be qualitatively understood as a superposition of translational and rotational

motion associated with filament conformational modes of opposite symmetry. Our results can be tested in

molecular-motor filament mixtures, synthetic chains of autocatalytic particles, or other linearly connected

systems where chemical energy is converted to mechanical energy in a fluid environment.
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Components which convert chemical energy to me-
chanical energy internally are ubiquitous in biology.
Common examples where this conversion leads to autono-
mous propulsion are molecular motors (at the subcellular
level) and bacteria (at the cellular level) [1]. Recently,
biomimetic elements which convert chemical energy into
translational [2] or rotational [3] motion have been realized
in the laboratory. While the detailed mechanisms leading
to autonomous propulsion in these biological and soft
matter systems show a wonderful variety [4], their collec-
tive behavior tends to be universal and can be understood
by appealing to symmetries and conservation laws [5]. This
realization has led to many studies of the collective prop-
erties of suspensions of hydrodynamically interacting
autonomously motile particles [6].

There are ample instances in biology, however, where
the conversion of chemical to mechanical energy is not
confined to a particlelike element but is, instead, distrib-
uted over a linelike element. Such a situation arises, for
example, in a microtubule with a row of molecular motors
converting energy while walking on it. The mechanical
energy thus obtained not only produces motion of the
motors but also generates reaction forces on the micro-
tubule, which can deform elastically in response.
Hydrodynamic interactions between the motors and be-
tween segments of the microtubule must be taken into
account since both are surrounded by a fluid. This combi-
nation of elasticity, autonomous motility through energy
conversion, and hydrodynamics is found in biomimetic
contexts as well. A recent example is provided by mixtures
of motors which crosslink and walk on polymer bundles. A
remarkable cilialike beating phenomenon is observed in
these systems [7]. A polymer in which the monomeric
units are autocatalytic nanorods provides a nonbiological
example of energy conversion on linear elastic elements.

Though such elements are yet to be realized in the labora-
tory, active elements coupled to passive components
through covalent bonds have been synthesized [2] and
may lead to new kinds of nanomachines [3].
Motivated by these biological and biomimetic examples,

we study, in this Letter, a semiflexible elastic filament
immersed in a viscous fluid with energy converting active
elements distributed along its length. We present an equa-
tion of motion for the filament that incorporates the effects
of nonlinear elastic deformation, active processes, and
nonlocal Stokesian hydrodynamic interactions. We use
the lattice Boltzmann (LB) method to numerically solve
the active filament equation of motion. Our simulations
show that a straight active filament is linearly unstable to
transverse perturbations. Depending on the symmetry of
the perturbation, the hydrodynamic flows produce transla-
tional or rotational motion of the filament. Conformational
symmetry provides a qualitative way of understanding the
dynamics of the nonlinear fluctuating states that develop at
high ratios of activity to elasticity. We describe these
results and our model in detail below.
Model.—Our model for the active filament consists of N

beads, with coordinates rn, interacting through a potential
given by

Uðr1; . . . ; rNÞ ¼
XN�1

m¼1

USðbmÞ þ
XN�2

m¼1

UBðbm;bmþ1Þ

þ 1

2

XN

m;n¼1

ULJðrn � rmÞ: (1)

The two-body harmonic spring potential USðbmÞ ¼
1
2 kðbm � b0Þ2 penalizes departures of bm, the modulus of

the bond vector bm ¼ jrm � rmþ1j, from its equilibrium
value of b0. The three-body bending potential
UBðbm;bmþ1Þ ¼ ��ð1� cos�mÞ penalizes departures of
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the angle �m between consecutive bond vectors from its
equilibrium value of zero. The rigidity parameter �� is
related to the bending rigidity as � ¼ b0 ��. The repulsive
Lennard-Jones potential ULJ vanishes if the distance be-
tween beads rmn ¼ jrm � rnj exceeds �LJ. The nth bead
experiences a force fn ¼ �@U=@rn when the filament
stretches or bends from its equilibrium position. With the
above choice of potential the connected beads approximate
an inextensible, semiflexible, self-avoiding filament.

Active nonequilibrium processes, such as those that con-
vert chemical energy to mechanical energy, are internal to
the fluid and hence cannot add net momentum to it. Then,
the integral of the force density on a surface enclosing the
active element must vanish. This is ensured if the active
force density is the divergence of a stress. Since the active
processes cannot add angular momentum to the fluid, the
stress must be symmetric [8]. Themost dominant Stokesian
singularity with these properties is the stresslet [9]. There is
a remaining freedom of the sign of the stresslet and its angle
relative to the filament. Motivated by the tangential stresses
exerted by motors walking on microtubules [7], we choose
the stresslet to be extensile and oriented along the instanta-

neous tangent t̂n to the filament:

� n ¼ �0ðt̂nt̂n � I=dÞ; (2)

where d is the spatial dimension and�0 > 0 sets the scale of
the activity. The results of other choices of sign and ori-
entation will be presented elsewhere.

Elastic forces and active stresses produce velocities in
the fluid. In the Stokesian regime, the velocity in a three-
dimensional unbounded fluid at location r produced by a
force f at the origin is v�ðrÞ ¼ O��ðrÞf�, whereO��ðrÞ ¼
ð��� þ r̂�r̂�Þ=8��r is the Oseen tensor, Cartesian direc-

tions are indicated by Greek indices, � is the fluid shear
viscosity, and r̂�¼ r�=r. Similarly, the velocity at location
r produced by a stresslet � at the origin is v�ðrÞ ¼
D��	ðrÞ��	, where D��	ðrÞ ¼ ð�r̂���	 þ 3r̂�r̂�r̂	Þ=
8��r2 [10]. In the presence of rigid or periodic boundaries
the tensors O and D must be replaced by the appropriate
Green’s functions of Stokes flow that vanish at the bounda-
ries or have the periodicity of the domain [10]. Similarly,
two-dimensional Green’s functions must be used when
studying the motion of filaments in planar flows [9]. The
velocity of the nth bead is obtained by summing the force
and activity contributions from all beads, including itself,
to the fluid velocity at its location. An isolated spherical
bead with a force f acquires a velocity 
f where 
 is its
mobility. By symmetry, an isolated spherical bead with a
stresslet � cannot acquire a velocity. This gives the follow-
ing equation of motion for the active filament:

_r n ¼
XN

m¼1

½Oðrn � rmÞ � fm þDðrn � rmÞ � �m�; (3)

where, for m ¼ n, O�� ¼ 
��� and D��	 ¼ 0.

Equations (1)–(3) represent our model for the nonlocal

Stokesian hydrodynamics of an active elastic filament.
In the absence of bending rigidity and activity, our
model reduces to Zimm dynamics of a polymer in a good
solvent [11].
The ratio of the stresslet and Stokeslet terms in the

equation of motion is a dimensionless measure of activity.
Estimating the curvature elastic force as �=L2, where
L ¼ ðN � 1Þb0 is the length of the filament, yields the
activity number A ¼ L�0=�. The rates of active and
elastic relaxation are �� ¼ �0=�L

d and �� ¼ �=�Ldþ1,
respectively. Since A ¼ ��=��, the activity number also

FIG. 1 (color online). Spontaneous symmetry breaking due to
a linear instability. (a) A straight filament produces a flow
symmetric about both its axis and its midpoint. This flow can
only produce an extensile motion of the filament. (b) The straight
conformation, however, is linearly unstable to transverse pertur-
bations. Here the perturbation is symmetric about an axis passing
through the filament midpoint. This leads to a flow which is no
longer symmetric about the initial axis. It enhances the insta-
bility and can produce center of mass motion of the filament.
Bead positions are shown as yellow filled circles, while the fluid
velocity is shown as streamlines with the background color
indicating its magnitude.
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measures the ratio of time scales associated with active and
elastic relaxation. AsA ! 0 the active time scale diverges
and conformational changes occur only due to elastic
forces. AsA ! 1 conformational changes due to activity
are much more rapid than those due to elasticity.

Method.—We use the lattice Boltzmann method [12] to
obtain the incident flow in Eq. (3), corresponding to terms
with m � n, and then integrate the equations using the
forward Euler method. The method of obtaining the incident
flow is described in detail in Refs. [13] and [14], and is
related to methods used in Ref. [15]. The subtleties in using
the lattice Boltzmann method to solve Eq. (3) are described
in detail in Ref. [14]. We use lattice units in which both
spatial and temporal discretization scales are unity. We
choose b0 ¼ 2 and k such that there is less than 1% variation
in contour length. We choose �� in the range 0.0 to 0.5, �0 in
the range 0 to 0.05, and N in the range 16 to 96. The initial

filament conformation is a superposition of small amplitude
transverse sinusoidal deformations of wavelengths a few
integer multiples of L. The integration is carried out for
several million time steps. Our results, unless otherwise
stated, are for periodic planar lattices of size 128.
Results.—We summarize our results in Figs. (1 and 2) and

the movies in Ref. [14]. Our simulations find a linear insta-

bility of an initially straight filament. On dimensional

grounds, this instability occurs only when L>lA��=�0,

where numerical prefactors can be obtained from a linear

stability analysis of Eq. (3). In contrast, the elastic Euler

instability of a filament under forceF occurs whenL > lE �ffiffiffiffiffiffiffiffiffi
�=F

p
. A linear instability of passive filaments in an active

medium without nonlocal hydrodynamics was reported in

Ref. [16], while bow-shaped conformation for filaments

driven by external forces were reported in Ref. [17].
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FIG. 2 (color). Filament motion for high activity. (a) For an even initial conformation withA ¼ 250:7, the motion is predominantly
translational. (b) For an identical initial conformation with A ¼ 150:4, the motion is translational as well as rotational due to the
spontaneous appearance of conformations with odd symmetry. In both (a) and (b) the color of the trace corresponds to the center of
mass speed j _Rj normalized by its maximum value. (c) and (d) Time traces of the x (top) and y components (bottom) of _R (olive dashed
line) andK ¼ �ð�0=4��b0Þ hßn̂i (black solid line), where hßn̂i is the average curvature, corresponding to simulations in (a) and (b),
respectively. The velocity and the curvature remain strongly correlated for various filament conformational modes and activity
numbers. Times are in 103 LB steps.
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We show the nature of the linear instability, as A ! 1
and k ! 0, in Fig. (1) and its accompanying movie [14].
The flow produced by a straight filament is symmetric
about the filament center and the filament axis, as shown
in Fig. 1(a). It can only produce an extensile motion in the
filament which is transient, since it is balanced by the
stretching elasticity. A spontaneous transverse perturbation
breaks the flow symmetry about the initial axis, enhancing
the perturbation, as shown in Fig. 1(b). The flow now
develops an uncompensated directional component in
which the filament can translate. Since the hydrodynamic
drag on the filament is greater at its ends [18], a balance
between elastic deformation, active propulsion, and drag
ensues and the filament propels steadily in a deformed
bow-shaped conformation [14].

In Fig. (1) the initial perturbation is symmetric about the
filament midpoint. We call this an even mode. Initial
perturbations which are antisymmetric about the midpoint
are also linearly unstable. However, these odd modes pro-
duce flows of a completely different nature than the even
modes. Instead of an uncompensated linear component, the
flow develops a vorticity centered on the filament midpoint
which results in pure rotational motion [14]. A generic
initial perturbation is a superposition of both even and odd
modes and, thus, both rotates and translates. At low A,
there is little coupling between the conformational modes,
due to which the filament has steady motion. However,
with increasingA greater elastic deformations are needed
to balance the activity, due to which the filament develops
nonlinear fluctuating states with large-amplitude deforma-
tions, as shown in Fig. (2) and the accompanying movies
[14]. Conformational modes are now coupled, and modes
absent from the initial perturbation can spontaneously
appear. With a predominance of even modes, the motion
is primarily translational as seen in Fig. 2(a), but when a
spontaneously generated odd mode appears the motion is
both translational and rotational as seen in Fig. 2(b). In
cubic flows, we see similar linear instabilities and non-
linear fluctuating states [14]. It is surprising that such
complex animate behavior can be generated by Eq. (3).
Remarkably, its qualitative aspects can be understood from
basic symmetry arguments relating conformations to the
flows they produce. The role of symmetry in the motility of
active droplets has been studied recently in Ref. [19].

In the free-draining approximation, it is possible to
relate the center of mass velocity _R to the mean curvature
of the filament [14],

_R ¼ � �0

4��b0
hßn̂i; (4)

where ß is the local curvature and n̂ is the local unit normal
vector. In Figs. 2(c) and 2(d) we plot components of
this equation corresponding to simulations in Figs. 2(a)
and 2(b), respectively. The agreement is good in both
cases. Thus local hydrodynamics provides a good
approximation for the translational velocity but nonlocal

hydrodynamics is required to fully explain the conforma-
tional fluctuations. The interplay between nonlocal hydro-
dynamics and semiflexibility is necessary for the rotational
motion of the filament, as has been noted earlier in a
different context [17].
For a microtubule of size L� 30 
m, �� 50 pN
m2

with about 200 motors per micron exerting approximately
6 pN of force, we obtain A� 60. These parameters pro-
vide a translational speed of�1 mm s�1 for a semicircular
shape in water. The activity can be manipulated in motor-
polymer bundle systems or in polymers of autonomously
motile nanorods over a large range of A. These systems
would be the best candidates for a verification of our results.
Discussion and conclusion.—Our model has several im-

portant variations. We argued that active processes cannot
add linear or angularmomentum to the fluid and, so,must be
represented by Stokesian singularities with those proper-
ties. This ruled out the Stokeslet and the rotlet but allowed
for higher singularities, of which the stresslet, being the
most dominant, was retained. The stresslet, with aC1 axis,
is not forbidden by symmetry as a representation of a polar
active element. If it is forbidden for non-symmetry reasons,
we must use the potential dipole d [10], the leading singu-
larity with polar symmetry, whose velocity field is v�ðrÞ ¼
G��ðrÞd�, G�� ¼ ð���� þ 3r̂�r̂�Þ=8��r3, in Eq. (3).

The axis of the stresslet or the potential dipole can be
oriented normally or obliquely to the local tangent of the
filament and the stresslet can also be contractile, �0 < 0.
The precise nature of the nonlinear steady states obtained
from these various combination will be reported in future
work. A generic equation of motion encompassing these
specific cases is provided in Ref. [14].
Semiflexibility is crucially important in obtaining the

results above. A rigid rod (� ¼ 1, A ¼ 0) is immune to
the active instability. Since the uniaxial axes of the stress-
lets and the rod are aligned, it cannot, by symmetry, acquire
any translational or rotational motion. It is only by the
breaking of this symmetry, possible whenA � 0, that the
filament is able to acquire motion.
We have presented a model for an autonomously motile

semiflexible filament which takes into account nonlocal
hydrodynamic interactions. Our model opens up the pos-
sibility of studying the nonequilibrium dynamics of active
filaments, for example the cilialike beating of motor-
polymer bundles [7], as well as the collective properties
of networks of active filaments, such as the cytoskeleton.
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