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The two electrons of a Cooper pair in a conventional superconductor form a spin singlet and therefore a

maximally entangled state. Recently, it was demonstrated that the two particles can be extracted from the

superconductor into two spatially separated contacts via two quantum dots in a process called Cooper pair

splitting (CPS). Competing transport processes, however, limit the efficiency of this process. Here we

demonstrate efficiencies up to 90%, significantly larger than required to demonstrate interaction-

dominated CPS, and on the right order to test Bell’s inequality with electrons. We compare the CPS

currents through both quantum dots, for which large apparent discrepancies are possible. The latter we

explain intuitively and in a semiclassical master equation model. Large efficiencies are required to detect

electron entanglement and for prospective electronics-based quantum information technologies.
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Quantum entanglement between two particles is a fun-
damental resource for quantum information technologies
[1]. Experiments with entangled photons are well devel-
oped and already offer first applications [2]. However,
entanglement between electrons, the fundamental particles
of electronics, is difficult to create in a controlled way.
Electron-electron interactions, for example in the Fermi
sea of a metal, tend to destroy particle correlations. In
contrast, in nanostructured electronic devices, interactions
can be exploited, for example to generate entangled
photons [3].

In a conventional superconductor the electrons form spin
singlet Cooper pairs in the BCS ground state. If such pairs
can be extracted coherently, they can in principle serve as a
source of spatially separated entangled electrons [4,5]. The
process of converting a Cooper pair into two electrons in
different normal metal contacts is called crossed Andreev
reflection or Cooper pair splitting (CPS) and can lead to
electronic correlations in metallic samples [6–10]. CPS can
be enforced and electrically tuned by coupling the super-
conductor to two quantum dots (QDs), which inhibits the
simultaneous transport of two electrons into the same
contact. Recently, CPS was demonstrated on devices with
a superconductor S coupled to two parallel QDs, each
with a normal metal output lead N1 and N2, as shown
schematically in Fig. 1(a) [11–14]. In these experiments
local (Cooper) pair tunneling (LPT, see below) and other
competing processes reduced the CPS efficiency to a few
percent up to 50%. Such values can in principle be reached
without enforcing the splitting by electron-electron inter-
actions on the QDs, e.g., in a chaotic cavity [15], or in a
double-dot system with strong interdot coupling [12],
where the electrons of a Cooper pair can exit the device
through two ports at random. However, for applications
and more sophisticated experiments, for example the ex-
plicit demonstration of entanglement, efficiencies close to
unity are required.

Here we present CPS experiments on a carbon nanotube
(CNT) device and demonstrate efficiencies up to 90%,
values only possible with electron-electron interactions
on the QDs. In addition, we find discrepancies between
the CPS part of the currents through the two QDs, which
we relate to a competition between local processes and
CPS in a semiclassical master equation model. The large
CPS efficiencies and the increased understanding of the
relevant mechanisms are important steps on the way to an
all-electronic source of entangled electron pairs in a
solid-state device.
An artificially colored scanning electron micrograph

of a CPS device is shown in Fig. 1(b), together with a
schematic of the measurement. A CVD-grown CNT
(arrow) is contacted in the center by a 200 nm wide
palladium/aluminum (thicknesses 4 nm=60 nm) contact
(S), which becomes superconducting below �1:1 K. Two
pure Pd contacts to the right and left of S serve as normal
metal contacts N1 and N2, both of which define a QD
(QD1 and QD2) on the two CNT segments adjacent to S.
The QDs can be tuned electrically by a global backgate and
the local side gates SG1 and SG2.
The experiments are performed in a dilution refrigerator

at a base temperature of �20 mK. From standard charge
stability diagrams we extract charging energies of
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FIG. 1 (color online). (a) Schematic of the device geometry.
The probabilities for the individual transport processes, pi, are
discussed in the text. (b) Scanning electron micrograph of the
CPS device and measurement setup.
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�7 meV for QD1 and�4 meV for QD2, an orbital energy
spacing of �1 meV, and an energy gap due to the super-
conductor of �120 �eV. With S in the normal state
we find typical level broadenings of �150–500 �eV.
Relatively low peak conductances suggest a rather asym-
metric coupling of the QDs to the leads. The lever arms
from a side gate across the superconductor to the other QD
is roughly ten times smaller than that of a local side gate. In
conductance measurements with the two QDs in series we
do not observe an anticrossing of the QD resonances. This
difference to Ref. [12] might be due to the larger width of
S and allows us to tune both QDs individually through
resonances without a hybridization of the QD levels.

Figures 2(a) and 2(b) show the simultaneously recorded
differential conductances G1 through QD1 and G2 through
QD2, both as a function of the side-gate voltages USG1 and
USG2. The measurements were done at zero bias and zero
magnetic field. WhenUSG1 is varied, QD1 is tuned through
several resonances, which result in conductance maxima in
G1, labeled L1, L2, and L3 in Fig. 2(a). The amplitudes of
the resonances vary only little when tuningUSG2, while the
resonance positions change slightly due to capacitive cross
talk from SG2 to QD1. Very weak, but similar conductance
ridges labeled R1, R2, and R3 can be observed in the
conductance through QD2 in Fig. 2(b). These are mainly
tuned by SG2, which results in conductance ridges almost
perpendicular to the ones in Fig. 2(a) due to QD1 [16].

Our main experimental findings are pronounced peaks
when both QDs are in resonance. At these gate configura-
tions the conductance is increased by up to a factor of
�100 compared to the respective conductance ridge.
This is most prominent in G2, but most of the peaks
can also be observed in G1 on a larger background. No
peaks at resonance crossings can be observed when the

superconductivity is suppressed by a small external mag-
netic field (see below and Supplemental Material [17]). If
only one QD is resonant, only local transport through this
QD is allowed. A possible local process is LPT, illustrated
in Fig. 2(c): the first electron of a Cooper pair is emitted
into the QD, which leaves S in a virtual excited state. When
the first electron has left the dot, the second tunnels into the
same QD. Other local processes like double charging of a
dot are strongly suppressed by the large charging energies.
However, if both QDs are in resonance, the second electron
can tunnel into QD2, as shown in Fig. 2(d), which splits
the initial Cooper pair.
We now focus on the resonance crossing (L2, R2).

Figure 3(a) shows the Coulomb blockade resonance L2 in
G1 as a function of USG1 (bottom curve). In the same gate
sweep, G2 is tuned through the resonance R2 due to capaci-
tive cross talk, which results in a wide conductance maxi-
mum. However, an additional much sharper peak occurs at
the voltage of theL2 resonance,with similarwidth and shape
as the resonance in G1. When the superconductivity is
suppressed by an external magnetic field of 250 mT, we
find no additional peak in G2 at the resonance crossing, but
a slight reduction consistent with a classical resistor network
[11] and a small capacitive coupling between the QDs, see
inset of Fig. 3(a) and the Supplemental Material [17]. The
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FIG. 2 (color online). (a) Differential conductance G1 of QD1
and (b) G2 of QD2 as a function of the side-gate voltages USG1

and USG2. (c) and (d) Energy diagrams of local (Cooper) pair
tunneling (LPT) and CPS.
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FIG. 3 (color online). (a) G1 and G2 as a function of USG1 for
USG2 � 2:07 V. Inset: the same measurement at a magnetic field
of 250 mT to suppress the superconductivity. (b) G2ðUSG1Þ for a
series of side-gate voltages USG2. (c) �G2 as a function of the
detuning �U between the resonances in QD1 and QD2 for the
indicated resonance crossings. (d) Plots of the visibilities �i,
the CPS efficiency s and � ¼ �1�2.
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resonance positions do not change with the field, but the
overall conductance can vary strongly due to the supercon-
ductor’s gap, which reduces local single electron transport.

As a measure for the CPS rates in the experiments we
use the amplitude �G2 of the additional peak in G2 at the
position of the QD1 resonance, as illustrated in Fig. 3(a).
The subtracted background is determined by manually
interpolating the bare QD2 resonance. �U is the detuning
between the two resonances. Figure 3(b) shows a series of
SG1 sweeps at different values of USG2 near the resonance
crossing (L2, R2), with the curve from Fig. 3(a) high-
lighted in red. One finds that �G2 depends strongly on
the detuning �U. In Fig. 3(c) we therefore plot�G2 vs �U,
where the value of Fig. 3(a) is marked by a red triangle. As
another example, the conductance variation near the cross-
ing (L3,R2) is also plotted in Fig. 3(c). For all crossings we
find that �G2 has a maximum at �U � 0, i.e., where both
QDs are in resonance, in agreement with theoretical pre-
dictions [4]. For �U � 0, �G2 falls off rapidly and tends
to zero on an energy scale consistent with the width of
the respective resonances.

On the resonance crossings investigated here, the maxi-
mum change in G2 is 0:012e2=h. This number has to be
compared to the total conductance, including the local
processes, so that we define the visibility of CPS in the
second branch of the Cooper pair splitter as �2 ¼ �G2=G2

(similar for G1). The CPS visibilities for both branches on
resonance crossing (L3, R2) are plotted in Fig. 3(d). �2 is
essentially constant over a large range of �U and reaches
values up to 98%; i.e., the current in one branch can be
dominated by CPS. �1, however, has a maximum of only
73% at �U � 0 and drops to zero for a large detuning.

As a measure for the CPS efficiencywe compare the CPS
currents to the total currents in both branches of the device.
Assuming that CPS leads to a conductance GCPS in each
branch, independent of other processes, we define the CPS
efficiency as

s ¼ 2GCPS

G1 þG2

: (1)

By assuming that GCPS ¼ �G2 we find efficiencies up to
s � 90%, much larger than required to demonstrate inter-
action induced CPS. The efficiency as a function of �U is
plotted in Fig. 3(d) for the crossing (L3, R2). However,
depending on the intended purpose of the entangler, s is
not necessarily the relevant parameter. For example, in
tests of Bell’s inequality proposed for electrons [18,19],
the measured quantities are current cross correlations
between the normal metal terminals, which suggests using
the following figure of merit:

� ¼ �1�2 ¼ �G1

G1

�G2

G2

: (2)

A violation of Bell’s inequality requires �> 1=
ffiffiffi

2
p � 71%.

In Fig. 3(d), � is plotted as a function of �U for the crossing
(L3, R2). We find values up to � ¼ 68%, mostly limited by

the large rates of local processes through QD1. Nonetheless,
the large visibility in G2 demonstrates the feasibility of
testing Bell’s inequality with electrons, if an ideal detection
scheme was available.
Intuitively one might expect �G1 ¼ �G2. This is found

within experimental errors for 4 of the 9 resonance cross-
ings. As an example, �G1 and �G2 of the crossing
(L3, R2) investigated above are plotted as a function of
�U in Fig. 4(a). For the other crossings, the two conduc-
tance variations deviate significantly from each other. Four
of the 9 crossings exhibit curves comparable to (L3, R1)
plotted in Fig. 4(b). Here, �G2 is larger than�G1 by about
a factor of 2, but with a similar curve shape. One of the
9 crossings, (L2, R1) shown in Fig. 4(c), is very peculiar:
the variation in �G1 is almost negligible, while �G2

exhibits a pronounced peak. In addition, one finds that
�G2 >G1; i.e., the conductance variation in one branch
is larger than the total conductance in the other.
To qualitatively understand our experiments we discuss

the electron dynamics in our devices using a strongly
simplified semi-classical master equation model. Details
can be found in the Supplemental Material [17] and more
sophisticated models in Refs. [20,21]. For each QD we
consider a single level with constant broadening and a
large charging energy. The system can be in one of the
following four states: both QDs empty, (0,0), either QD
filled with one electron, (1,0) or (0,1), or both dots occu-
pied, (1,1). The transport processes illustrated in Fig. 1(a)
lead to transitions between these states [17]. For example,
CPS changes the system from (0,0) to (1,1). The pi in
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FIG. 4 (color online). (a)–(c) �G1 and �G2 as a function of
the detuning �U for the indicated resonance crossings.
(d)–(f) Similar plots obtained from the master equation model
of CPS, including GCPS. The parameters varied between the
simulations are given in the figures. The inset in (e) shows the
conductances in the branch of QD1 due to local processes
(GLPT1), CPS and at N1.
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Fig. 1(a) denote the respective rates (with arbitrary units)
of such a change of the system state occupation. Since the
pi are effective values that can depend in a nontrivial way
on several tunnel barriers and the superconducting gap, we
only assign rough values that qualitatively reproduce the
experimental findings. In addition, we assume that elec-
trons are transferred only in one direction, from S to the
QDs and from the QDs to the respective normal metal
contact. We also consider a tunnel coupling between the
dots. The resonances are incorporated by gate-dependent
Gaussian weights for pCPS, pNi and p12 [17]. We use a
diagrammatic method based on maximal trees to obtain the
steady-state occupation probabilities from the correspond-
ing master equation [22]. From the populations of the QDs
we then calculate the transport rates [17].

Our model shows that a finite QD population can lead to
a competition between the various transport mechanisms.
In Figs. 4(d)–4(f), simulated conductance variations are
plotted for different QD1 parameters, while those of QD2
are kept at pLPT2 ¼ 0:01 and pN2 ¼ 0:1 for all plots, i.e., in
the regime of Ref. [4], where the coupling to S is much
weaker than to the normal contacts. We set pCPS ¼ 0:03 to
obtain conductances comparable to the experiments, and
p12 ¼ 0:001 so that the interdot coupling is the smallest
parameter in the problem. If the occupation of both QDs
are negligible, i.e., pLPTi � pNi, one finds�G1 ¼ �G2, as
shown in Fig. 4(d) [23], similar to the experiments pre-
sented in Fig. 4(a).

If one QD occupation becomes significant, the conduc-
tance variations are not identical anymore. Figure 4(e) shows
plots for pLPT1 ¼ pN1 ¼ 0:1, for which �G2�2�G1, as in
the experiment shown in Fig. 4(b). The model also allows us
to calculate the rate at which Cooper pairs are extracted from
S by CPS. The corresponding conductance is also plotted in
Figs. 4(d)–4(f). We find that �Gi < GCPS as long as the
interdot coupling p12 is negligible; i.e., the experimentally
extracted CPS conductance underestimates the actual value,
maxð�G1;�G2Þ<GCPS. The explanation is that due to
CPS on a resonance crossing the average QD populations
are increased beyond the off-resonance equilibrium due to
the local processes, which leads to a reduction of the local
current into the N contacts. This is illustrated in the inset of
Fig. 4(e), where the calculated local conductance from S to
QD1, GLPT1, has a minimum where GCPS is maximal.
Intuitively, the QDs are not emptied fast enough, which
inhibits all processes on the dot. This suppressionmechanism
might account for the discrepancy between noise correlations
and conductance measurements in Ref. [14].

The situation is more complex if the tunnel coupling
between the dots becomes relevant. For example, if
pN1 ¼ p12 ¼ 0:001 and pLPT1 ¼ 0:01> pN1, as used for
Fig. 4(f), the electrons can leave QD1 to N1 and to QD2
with the same probability. Since pN1 is small, this quenches
G1, but G2 is increased due to the additional current from
QD1. Here, the �Gi do not give an upper or lower bound

for the CPS rate and �G2 can become larger than G1, as in
the experimental curves in Fig. 4(c). We note that the
discussed situations are not in the regime of completely
filled QDs. Our model suggests that in this unitary limit the
conductances can be reduced considerably in the center of
a resonance crossing, which might account for the as yet
unexplained anomalous behavior of the on-resonance
signals in Ref. [11].
In summary,we presentCPSexperimentswith efficiencies

up to 90%, demonstrating the importance of electron-
electron interactions in such systems. For the figure of merit
relevant in tests of Bell’s inequality for electrons we find
values close to the required limits. In addition, we asses CPS
on both QDs and find rather large apparent discrepancies
between the two conductancevariations,whichwe explain in
a semi-classical master equation model. The latter suggests
that for negligible interdot couplings the experimentally
extracted CPS rates are a lower bound to the real CPS rates.
Our experiments and calculations show that there is a large
variety of different transport phenomena in a Cooper pair
splitter device that need further investigation. Of capital
importance is the observation that if both dots had the prop-
erties of QD2, tests of Bell’s inequality even with nonideal
detectors could be performed to detect electron entangle-
ment, an important step on the way to a source of entangled
electron pairs on demand.
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Rev. Lett. 93, 197003 (2004).

[7] S. Russo, M. Kroug, T.M. Klapwijk, and A. F. Morpurgo,
Phys. Rev. Lett. 95, 027002 (2005).

[8] P. Cadden-Zimansky, J. Wei, and V. Chandrasekhar,
Nature Phys. 5, 393 (2009).

[9] A. Kleine, A. Baumgartner, J. Trbovic, and C.
Schönenberger, Europhys. Lett. 87, 27011 (2009).

[10] J. Wei and V. Chandrasekhar, Nature Phys. 6, 494 (2010).
[11] L. Hofstetter, S. Csonka, J. Nygård, and C. Schönenberger,
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