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We investigate a tunable two-impurity Kondo system in a strongly correlated carbon nanotube double

quantum dot, accessing the full range of charge regimes. In the regime where both dots contain an

unpaired electron, the system approaches the two-impurity Kondo model. At zero magnetic field the

interdot coupling disrupts the Kondo physics and a local singlet state arises, but we are able to tune the

crossover to a Kondo screened phase by application of a magnetic field. All results show good agreement

with a numerical renormalization group study of the device.
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A quantum dot coupled to two leads can be considered
as an experimental realization of the single-impurity
Anderson model [1]. When the dot contains a single un-
paired electron, the Anderson model accurately describes
how, below a characteristic temperature TK, correlated
electron tunnelling between the quantum dot and the leads
results in coherent screening of the electron spin [2–4]. The
combined system of electrons on the quantum dot and
leads forms a spin singlet, a phenomenon known as the
Kondo effect [5]. Likewise, two tunnel-coupled quantum
dots should amount to an experimental realization of the
two-impurity Anderson model [6]. Here the physics is
much richer, particularly in the regime where each dot
contains an unpaired electron. In this case, a competition
now arises between the tendency of the conduction elec-
trons on the leads to screen the spins on the quantum dots,
and the antiferromagnetic exchange coupling J between
the two localized spins. The former favors formation of a
Kondo singlet between each lead and the dot to which it is
coupled, while the latter favors a local singlet state. The
resulting ground state of the system depends sensitively on
the relative strength of the interactions, an understanding
of which is important and believed to underlie the elec-
tronic properties of a wide range of strongly correlated
materials, including spin glasses and heavy fermion com-
pounds [5].

The essence of this competition is captured by the two-
impurity Kondo model [7–10], which describes the low-
energy physics of the two-impurity Anderson model in the
absence of charge transfer between the leads, and famously
contains a quantum phase transition at the boundary of the
local and Kondo singlet phases where J � TK. While this
has attracted considerable experimental attention [11–13],
observation of the transition has remained elusive. This is
perhaps unsurprising as charge transfer between the leads,
absent in the two-impurity Kondo model, is necessarily
present in experiment if a conductance is measured. As is
well known theoretically, this transforms the quantum
phase transition into a crossover, such that the ground state

of the system is always a Fermi liquid [10,14], although
remnants of the transition are evident in a strong enhance-
ment of the zero-bias conductance in the vicinity of J � TK

[15–17].
An understanding of the transport properties of a real-

istic two-impurity system, such as a double quantum dot
(DQD), thus requires that charge transfer between the leads
be taken into account. This is achieved in the present
Letter, where we present a study of a tunable carbon nano-
tube DQD in the strongly correlated regime, and use a
numerical renormalization group (NRG) study of the
two-impurity Anderson model to describe the device. We
show that in the charge regime where both dots have an
unpaired electron, the ground state of the device is a local
singlet phase with suppressed Kondo correlations. The
ability to tune the exchange coupling and the Kondo scales
allows one, in principle, to cross over from the local singlet
to the Kondo screened phase. In our device the onset of
charge fluctuations prevents the crossover being seen
cleanly at zero magnetic field. We have, however, been
able to observe it at finite magnetic field, consistent with
recent theoretical predictions [14].
The device we consider is a single-walled carbon nano-

tube on a degenerately doped Si=SiO2 substrate contacted
by Au contacts, see Fig. 1(a) [18]. A central gate is used to
introduce a tunable tunnel barrier, separating the nanotube
into two quantum dots, which can be individually ad-
dressed by two additional side gates. The stability diagram
of the device is shown in Fig. 1(b). The effective electron
number of each charge regime is indicated by the ordered
pairs (n,m). The large-small-large alternation in the stabil-
ity diagram reflects the twofold spin degeneracy of the
device, and allows us to establish unambiguously the parity
of the electron number (even or odd). The orbital degen-
eracy of the nanotubes is broken, most likely as a result of
K � K0 mixing [19,20].
From an analysis of the stability diagram we are able to

extract the on-site charging energiesU� 2:5 meV for both
dots, the electrostatic coupling energy U0 � 0:6 meV, and

PRL 109, 156804 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

12 OCTOBER 2012

0031-9007=12=109(15)=156804(5) 156804-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.109.156804


the interdot tunnel coupling t� 0:4 meV. The widths of
the Coulomb blockade peaks in the stability diagram allow
an estimate of the coupling � between the dots and the
leads. In the noninteracting limit the full width at half
maximum is equal to 2�, but the peaks are broadened by
a further factor of �2 by many-body scattering processes
[21]. Bearing this in mind, we obtain �R � 0:23 meV and
�L � 0:12 meV for the right and left dot, respectively. For
these coupling strengths U=�� � 10, so we might expect
cotunneling processes, and thus the Kondo effect, to be
experimentally observable. To investigate the presence of
Kondo correlations, we measured the differential conduc-
tance in all charge regimes, see Figs. 1(c) and 1(d). When
both dots contain an even number of electrons, the Kondo
effect is inoperative, and conductance is suppressed and
featureless around the source-drain bias Vsd ¼ 0. On the
other hand, when one of the quantum dots contains an odd
number of electrons, we observe a pronounced zero-bias
conductance peak. The evolution of the differential con-
ductance as electrons are added to the right dot, keeping
the effective electron number of the left dot fixed atN ¼ 2,
is shown in the topmost panel of Fig. 1(d). The character-
istic appearance of a zero-bias peak when the electron
number is odd is a clear indication of Kondo physics in
the (0,1), (1,0), (1,2), and (2,1) charge regimes [2–4], the

spin of the singly occupied dot being effectively Kondo
screened by the lead to which it is coupled.
The behavior, however, is markedly different in the

center of the (1,1) charge regime where the electron num-
ber is odd for both dots. As shown in Fig. 1(c), the zero-
bias conductance is suppressed and a double peak structure
arises at finite bias [11,12]. The behavior we observe is
characteristic of a strongly correlated DQD, when J � TL

K,
TR
K, where T

L
K, T

R
K denote the Kondo scales for the left and

right dots, respectively. These energy scales are readily
estimated using the parameters obtained above. In the
center of the (1,1) charge regime the exchange coupling
J � 4t2=ðU�U0Þ, which yields J � 0:34 meV. The
Kondo scales can be estimated roughly using the
Haldane expression [22]

T�
K � ffiffiffiffiffiffiffiffiffiffi

��U
p

exp½���ð�� þUÞ=2��U�; (1)

where �� (� ¼ L, R) is the level energy of dot � relative
to the zero-bias Fermi level of the leads. This yields
TR
K � 10�2 meV and TL

K � 10�4 meV in the middle of
the (1,1) charge regime, such that J � TL

K, T
R
K.

The above interpretation of the measurements is
strengthened by an NRG study of our double quantum
dot. The calculated stability diagram using the experimen-
tal parameters, see Fig. 2(a), reproduces all key features of
the experiment and allows for a comparison between
experiment and theory (for further details see the
Supplemental Material [18]). Finite-bias conductances,
the NRG calculation of which is inevitably approximate
(see Ref. [18]), are also in good agreement. In particular
the double peak structure in the (1,1) charge regime is
reproduced in the calculations, see Fig. 2(b). It can
be understood physically as a nonequilibrium Kondo
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FIG. 1 (color online). (a) Schematic of the carbon nanotube
DQD device. (b) Stability diagram of the DQD measured at
T � 60 mK. The Si backgate voltage Vbg ¼ �1:7 V. The barrier

gate voltage Vbar ¼ 0 mV. (c) Differential conductance in the
centers of the various charge regimes of panel (b) as indicated by
(n, m). The curves in the rightmost panel are offset in steps of
0.03 e2=h. (d) Differential conductance along the lines indicated
in panel (a).
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conductance along the lines indicated in panel (a).
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effect [23]. While the formation of a local singlet state
suppresses Kondo correlations at zero bias, interlead spin-
flip tunneling becomes possible and Kondo correlations are
partially restored when Vsd is comparable to the exchange
energy J separating the atomic-limit singlet ground state
from its triplet excited states. As demonstrated below, a
unique feature of double quantum dots is that TL

K, T
R
K and

J are all tunable by varying the dot level energies.
We discuss first the behavior along diagonal 2 in

Fig. 1(b), for which the differential conductance is shown
in Fig. 1(d), middle panel. Along this diagonal, the dot
level energies �L;R are decreased while their difference (or

detuning) �L � �R remains zero. This allows us to tune the
Kondo scales of the two quantum dots, as these strongly
depend on the dot level energies, see Eq. (1). In the center
of the (1,1) charge regime, the Kondo scales for both dots
are at a minimum. Moving away from the center, the
Kondo scales thus increase. However, before we can access
the Kondo screened phase we reach the edge of the (1,1)
charge regime, moving into a mixed-valence regime. Here
charge fluctuations are significant, and a two-impurity
Kondo model description is no longer valid. The inability
to access the Kondo screened phase this way can be under-
stood given that for our device J � �L;R, so to observe the

crossover requires TL;R
K � �L;R, which occurs only when

j�L;Rj & �L;R, i.e., in the mixed-valence regime. A lower J
is therefore required in order to observe the crossover
cleanly in this way. While we were able to control the
tunnel coupling t experimentally (see Ref. [18]), suffi-
ciently small values of it were not reached here.

We now focus on the behavior along diagonal 3 in
Fig. 1(b) for which the differential conductance is shown
in Fig. 1(d), bottom panel. Along this diagonal the detun-
ing (�L � �R) is increased while �L þ �R is constant. As
indicated by the dashed white line in Fig. 1(d), the peaks
observed in the differential conductance move further
apart as the magnitude of the detuning is increased and
the conductance becomes highly asymmetric in bias. This
increase in peak splitting is due to J becoming larger with
positive detuning as the (1,1) singlet state becomes closer
in energy to the (0,2) singlet [24]. The ability to tune the
exchange energy by varying the detuning is essential in
spin-based quantum information processing schemes us-
ing quantum dots [25]. Importantly, the present data show
that this tunability can also be used as a probe of Kondo
physics.

The consequences of varying the exchange J are inves-
tigated further in Fig. 3 by application of a magnetic field
(B) perpendicular to the nanotube axis, for various values
of the detuning along diagonal 3 in the (1, 1) regime. At
finite B the observed zero-field peaks split into three com-
ponents, Figure 3(a) [of which the innermost peaks are
most easily resolved, see Figs. 3(a) and 3(b)], consistent
with a local singlet ground state and triplet excited state,
separated by �J at B ¼ 0. As B is increased, the energy

difference (� J � g�BB) between the singlet (S) and the
lowest-energy triplet state, T�, decreases. At a field Bc �
J=g�B these states are near degenerate. A strong zero-bias
conductance peak is then observed, due to Kondo screen-
ing of the S-T� pseudospin system [26–28], here by two
channels. {In our tunnel-coupled double quantum dot both
the S and T� states arise from the (1, 1) charge configura-
tion, in contrast to S-T� crossings observed [4,23,29,30] in
single quantum dots with two ‘‘active’’ levels, where the
relevant singlet is a configuration with the lower dot level
doubly occupied [31], and consequent Kondo screening
arises by a single effective channel [26].}
From the perspective of the two-impurity Anderson

model, and its experimental realization in our device, this
conductance peak is the signature of the finite-field cross-
over from a local singlet (LS) phase for B & Bc, to a
polarized Kondo screened (KS) phase for B * Bc, and
amounts to a finite-B continuation of the zero-field con-
ductance peak at J � TK [14–17]. For a L-R symmetric
two-impurity Kondo model, it was recently shown [14] that
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the well known zero-field quantum phase transition be-
tween the LS and KS phases, occurring at J ¼ Jc � TK,
extends into the (B, J)-plane [Fig. 3(c)]. The transition
could thus be driven either by tuning J through Jc at zero
field, or by tuning B through a critical Bc at fixed J. With
interlead charge transfer and L-R asymmetry, both of
which occur in our device, the transition line is of course
broadened into a line of crossovers [Fig. 3(c)] with asso-
ciated conductance peaks. For J � Jc in particular, where
the system at zero field is deep in the LS phase, Bc �
J=g�B (and the Kondo screened phase for B> Bc is
naturally spin polarized, asymptotically approaching
the free T� state). This behavior is observed clearly in
Fig. 3(d). In the center of the (1,1) regime, J � 0:34 meV
(as estimated above) yields Bc � J=g�B ¼ 2:9 T, in very
good agreement with the measured conductance peak in
Fig. 3(d) [18]. As detuning increases, J becomes larger as
noted above, and Bc is correspondingly seen to increase.
The evolution of conductance as a function of magnetic
field is in good agreement with the NRG calculations as
shown in Figs. 3(b) and 3(d). The calculations also confirm
(not shown) that the asymmetry in Vsd observed [Fig. 3(a)]
in the differential conductance with increasing detuning
results from the asymmetry �L � �R. For symmetric cou-
pling strengths, or precisely at the center of the (1,1) charge
regime where the system is electron-hole symmetric [e.g.,
the leftmost plot in Fig. 3(a)], no asymmetry is observed in
the differential conductance.

Finally, we show that by varying Vbar [see Fig. 1(a)] we
can directly tune the coupling strengths between the quan-
tum dots and their leads [32]. This is illustrated in Fig. 4(a)
which shows that for decreasing Vbar, the conductance at
the center of the (1,1) charge regime strongly increases. At
the same time, the double peak structure, clearly observed
for higher values of Vbar, gradually merges into one broad
peak. This behavior can be understood as an increase in the
coupling strengths �L;R, as illustrated by the NRG calcu-

lations, see Fig. 4(b), and consistent with the increase in
widths of the Coulomb blockade peaks in the stability
diagrams. On increasing �L;R, and hence decreasing

U=�L;R, the device becomes less strongly correlated and

charge fluctuations consequently more significant, thereby
eroding and ultimately destroying the double peak struc-
ture that is characteristic of the strongly correlated regime
of the DQD.

In conclusion, we have investigated a tunable two-
impurity Kondo system in a strongly correlated carbon
nanotube DQD, in which the full range of charge regimes
is accessible, and which amounts to a clear experimental
realization of a two-impurity Anderson model. In the (1,1)
regime, we have shown that the exchange and Kondo
energy scales can be varied by tuning the dot energy levels
or by varying the dot-lead tunnel couplings, providing the
possibility of observing the crossover between local singlet
and Kondo screened phases. While charge fluctuations in

this device prevented observation of the crossover at zero
field, we were able to observe it at finite field, indicated by
enhanced zero-bias conductance. The work is readily ex-
tended to carbon nanotube DQDs coupled to superconduct-
ing [33] or ferromagnetic [34] leads. This allows
experimental access to rich phase behavior controlled by
the interplay between Kondo, exchange, and superconduct-
ing correlations, and further highlights the potential of
carbon nanotube quantum dots to investigate correlated
electron physics.
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