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The Kondo effect is a striking consequence of the coupling of itinerant electrons to a quantum spin with

degenerate energy levels. While degeneracies are commonly thought to arise from symmetries or fine-

tuning of parameters, the recent emergence of Majorana fermions has brought to the fore an entirely

different possibility: a topological degeneracy that arises from the nonlocal character of Majorana

fermions. Here we show that nonlocal quantum spins formed from these degrees of freedom give rise

to a novel topological Kondo effect. This leads to a robust non-Fermi liquid behavior, known to be difficult

to achieve in the conventional Kondo context. Focusing on mesoscopic superconductor devices, we

predict several unique transport signatures of this Kondo effect, which would demonstrate the nonlocal

quantum dynamics of Majorana fermions and validate their potential for topological quantum

computation.
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Traditionally, the Kondo effect arises when conduction
electrons couple to a confined region with a spin-
degenerate ground state [1,2]. More intricate scenarios
combining spin with other degeneracies can lead to exotic,
non-Fermi liquid (NFL) behavior [3,4]. These degenera-
cies, however, require the fine-tuning of parameters,
rendering such exotic physics quite fragile. Recent devel-
opments have shown that condensed matter systems can
display another, much more robust, degeneracy called
topological degeneracy [5]. This can arise from the appear-
ance of localized Majorana fermions in certain supercon-
ductor structures [6,7].

The possibility of realizing Majorana fermions using
superconductors has transformed an elusive notion of
high-energy physics into a tangible excitation in electronic
materials [8]. Several methods for creating them in a
controlled manner have been proposed, building on such
simple ingredients as s-wave superconductors and spin-
orbit coupling [9,10]. This has led to the recent experimen-
tal observation [11] of conductance signatures indicating
localized Majorana modes [12]. A key feature, not yet
addressed experimentally, is that pairs of Majorana fermi-
ons can nonlocally encode zero-energy fermions, which
span a multidimensional ground-state subspace. The de-
generacy of the ground state is topological: it is ensured up
to exponentially small corrections provided the Majorana
fermions do not overlap. The resulting nonlocal zero-
energy degrees of freedom form the topological qubits
that underlie the proposed schemes for fault-tolerant quan-
tum computation [5,6]. Finding the smoking gun signa-
tures of their quantum dynamics is an urgent issue.

The Kondo effect provides a central paradigm leading to
observable consequences of quantum dynamics within a
degenerate ground state, but the possibility that the degen-
eracy has a topological origin has not been previously
considered. We will show that topological degeneracy

can be a source of novel exotic Kondo effects and NFL
behavior that is highly robust. We predict that this topo-
logical Kondo effect leads to striking signatures in simple
transport measurements on mesoscopic superconductor
structures that support Majorana fermions. Such measure-
ments can be used to give clear evidence for the quantum
dynamics of nonlocal qubits, which form the basis for the
proposed uses of Majorana fermions in fault-tolerant quan-
tum computation.
We consider a setup consisting of a superconducting

island supporting Mtot localized Majorana modes, M of
which are coupled to spinless conduction electrons. The
conduction electrons occupy M single-mode quantum
wires (leads). As we explain below, achieving a Kondo
effect requires Mtot � 4, M � 3. The simplest configura-
tion with minimal Mtot and M is shown in Fig. 1. There
can be several realizations, e.g., using superconducting
heterostructures based on topological insulators [9], or
semiconductor structures [10], as in the nanowire setup

FIG. 1 (color online). Minimal setup for the topological Kondo
effect. There are Mtot ¼ 4 Majorana fermions (red dots), M ¼ 3
of which are coupled to conduction electrons. The figure illus-
trates the realization based on semiconductor nanowires (hori-
zontal bars). The wires are deposited on top of a superconductor
(central rectangle). Nearby gates (not shown) put the central
segment of the wires in a topological superconducting phase,
while the adjacent segments are depleted, forming a tunnel
barrier. The outermost segments host conduction electrons, and
can be contacted to normal metal electrodes (outer rectangles).
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in the experiment of Mourik et al.[11]. All realizations
work in a regime where the electrons are effectively spin-
less (due to strong spin-orbit coupling [9] or a large
Zeeman field [10]); the conditions ensuring this are natu-
rally present also in the leads. We consider the supercon-
ductor to be of mesoscopic size, connected to the ground
by a capacitor. In this regime, the charging energy Ec

becomes important and can play a key role with regard to
Majorana fermions [13]. It contributes to the Hamiltonian
by a term HcðNÞ ¼ EcðN � q

eÞ2, where N is the number of

electrons on the island and q is a background charge
determined by the voltage across the capacitor. The Mtot

Majorana modes correspond to Mtot=2 zero-energy fermi-
onic modes (Mtot is always even). The parity of the total
occupation number of these modes is tied to the parity of

N. Therefore, in each N sector we have a 2Mtot=2�1-fold
ground-state degeneracy, which immediately shows why
Mtot � 4 is required. The typical energy gap � above the
ground-state manifold is set by the superconducting
proximity effect. For the realizations mentioned above,
�� Ec � 0:5� 1 K is a reasonable estimate [13,14].

Working with temperatures and voltages T; V � �; Ec

for weak lead-island coupling, the low energy physics is
dominated by virtual transitions connecting the lowest
energy ground-state manifold of charge eN to the ground
states with N � 1 electrons [15]. This physics is captured
by the effective Hamiltonian

Heff ¼
X

i�j

�þ
ij�j�ic

y
i c j �

X

i

��
ii c

y
i c i; (1)

where �i and c i are Majorana and conduction electron
operators (at the tunneling point i), respectively, and we
have introduced the constants ��

ij ¼ ð 1
Uþ

� 1
U�
Þtitj, with

U� ¼ HcðN � 1Þ �HcðNÞ and tunneling amplitudes ti
(which can always be chosen positive). Equation (1) is
obtained by a Schrieffer-Wolff transformation [1], imple-
menting the leading-order perturbation theory in the lead-
island couplings. The full Hamiltonian is H¼HleadþHeff ,
where the first term is the Hamiltonian of the conduction
electrons, which we assume to be noninteracting.

To explain how the Kondo problem emerges, let us focus
on the first term in Eq. (1) and consider the setup of Fig. 1
with M ¼ 3 coupled Majorana fermions. It is known (see,
e.g., Ref. [6]) that the three �i realize the spin-1=2 Pauli
matrices, � ¼ �ði=2Þ�� �. Coupling these to the three
species in the leads suggests a Kondo problem of a spin- 12
impurity with spin-1 conduction electrons [16,17]. Indeed,
we have

X

i�j

�þ
ij�j�ic

y
i c j ¼ 1

2

X

�

����J� (2)

with �� ¼ P
abj"�abj�þ

ab, which is a Kondo term where the

conduction electrons enter through the spin-1 object J� ¼
i
P

ab"�bac
y
ac b. Remarkably, the spin structure of J� is

distributed nonlocally to spatially separate leads; this will
result in distinctive transport signatures.
The Kondo term is nontrivial if the impurity acts as a

quantum spin, as opposed to a classical Ising variable. This
requires coupling to at least two of the��. This needs three
�j, showing whyM ¼ 3 is the minimal case. The same ��

are the Pauli matrices acting on the topological qubit [6].
The topological Kondo effect reveals the quantum spin
nature of this object, thereby detecting the quantum qubit
dynamics. A smoking gun signature of this is already clear:
this Kondo effect should disappear if any one of the three
leads is decoupled.
To see how the Kondo effect shows up, we begin with a

renormalization group (RG) analysis of the minimal setup
of Fig. 1. Our considerations also apply for Mtot > 4,
allowing for stray Majorana fermions not coupled to the
leads. The presence of these modes is akin to the presence
of uncoupled spins not participating in the Kondo effect.
In terms of bare parameters, Heff enters as a weak

perturbation. We obtain the RG flow in this weak coupling
regime using the poor man’s scaling procedure, giving

d�1

dl
¼ ��2�3; (3)

(and cyclic permutations of the indices 1, 2, 3) where � is
the density of states of the leads at the Fermi energy. The
couplings ��

ij , similar to the potential scattering terms in

the Kondo context, do not renormalize. These are the usual
weak coupling RG equations of the Kondo problem, but it
should be kept in mind that �� now characterize nonlocal
charge transfers between different leads. AsU�; ti > 0, the
bare Kondo coupling is antiferromagnetic. Typically, ti
will not have the same value, which translates into an
exchange anisotropy in the Kondo language. Under
Eq. (3) the couplings increase, while �2

� � �2
� remain

constant. The flow is therefore towards an isotropic cou-
pling, ��=�� ! 1. This conventional result in the Kondo

context translates into something remarkable for our setup:
a tendency towards a threefold symmetry with respect to
relabeling the leads j ! jþ 1ðmod3Þ. The overall behav-
ior of the couplings is characterized by an inverse loga-
rithmic growth,

��ð�Þ � 1

lnð�=TKÞ ; (4)

where we have introduced the Kondo temperature TK and
the renormalized high-energy cutoff � ¼ �0e

�l � Ece
�l.

Denoting by �� a typical bare value of the ��-s, one

has TK � Ece
�1=� ��. The factors entering TK are the

same as for conventional Kondo systems, implying that
considering Kondo temperatures anywhere in the range
0< TK & 0:1 K is reasonable [4].
Upon approaching �� TK, the couplings cease to be

small, and the perturbative RG has to be replaced by a
nonperturbative analysis. A powerful route is provided by
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the conformal field theory method of Affleck and Ludwig
[18], which we applied to our problem [19]. (This comple-
ments Ref. [16], where the Kondo problem of spin-1
electrons was studied using Abelian bosonization assum-
ing an axial symmetry, not present in our case.) We find
that the flow is towards an intermediate coupling fixed
point with NFL behavior, which is robust. In the vicinity
of the fixed point, the scale dependence is due to dimension
4=3 irrelevant operatorsO�. The NFL behavior stems from
these: O� cannot be constructed out of ordinary fermions,
as the fermions can give only halfinteger dimensions. In
addition, marginal operators, corresponding to the original
��
ii terms, will also be present, but their scale dependence

(which is also through O�) can be neglected. It is by itself
remarkable that our setup, with simple noninteracting
leads, allows for the appearance of NFL behavior without
fine-tuning of the couplings. This is unlike conventional
Kondo variants leading to NFL physics, where one has to
fine-tune at least one coupling [3,4] or introduce leads that
are themselves NFLs [20].

The weak coupling flow and the knowledge of the nature
of the intermediate coupling fixed point can be applied to
deduce the behavior of various experimentally relevant
quantities. Given that the first signatures of localized
Majorana modes were obtained by conductance measure-
ments, we focus on the conductance Gkl between leads k
and l. For simplicity, we work in the linear response regime
and focus on the temperature dependence of Gkl. (The
results also apply to the nonlinear differential conductance
in the opposite T � V case upon replacing T by V in the
expressions.) The overall behavior is summarized in Fig. 2.
Importantly, the smoking gun signature distinguishing
Kondo and Ising cases is particularly clear: the Gkl we

find is strikingly different from the small, temperature-
independent conductance of the setup where the unmeas-
ured lead is decoupled (i.e., the Ising case, realizing
cotunneling transport [2] without the spin flips crucial to
the Kondo effect).
We now discuss how we obtained the T � TK and

T � TK asymptotics. In the T � TK regime, one can
apply a weak coupling argument: as the only term in Heff

that transfers charge between the leads is the Kondo cou-
pling, the conductance is Gkl � ð�þ

klÞ2 to leading order in

�þ
kl. Combining this with Eq. (4), we find

Gkl � 1

ln2ðT=TKÞ
: (5)

Observing such an inverse logarithmic increase would be a
qualitative signature of the topological Kondo effect.
Furthermore, we find Gij=Gkl ! 1 as the temperature is

lowered. This is a direct consequence of the flow to an
isotropic Kondo coupling. Capturing this flow so directly
via the conductance is a possibility that is absent in con-
ventional Kondo settings, and it provides another qualita-
tive signature of the topological Kondo effect.
At low temperatures T � TK, the inverse logarithmic

increase crosses over to a power law convergence to
the zero temperature limit. Suppressing the small,
temperature-independent corrections due to the marginal
operators, we find [19]

GklðTÞ ¼ 2e2

3h
þ cklT

2=3 ðk � lÞ; (6)

where ckl are nonuniversal coefficients [21]. This unusual
T dependence directly signals the NFL physics—indeed,

one can directly trace the T2=3 law back to second-order
corrections in O� [19]. Another noteworthy feature is that
the diagonal conductances (which follow fromGkl through

current conservation) approach 4e2

3h as T ! 0. The fact that

this value exceeds the conductance quantum indicates the
presence of Andreev reflection processes, allowing for
holes (not only electrons) to be backscattered. Note that
these have a different origin than in conventional normal-
superconductor systems where the superconductor absorbs
a Cooper pair in the process. Indeed, the charging energy
forbids this in our case. Instead, our system realizes a
strongly correlated ‘‘Andreev reflection fixed point’’ [22],
with the two electrons playing the role of Cooper pairs
exiting through the leads. Detecting this enhanced conduc-

tance together with the T2=3 dependence would be a clear
signature of the NFL physics.
Before concluding, we briefly discuss the generalization

of our results to M> 3. The M Majorana operators gen-
erate a Clifford algebra [8]. This implements the spinor
representation of the Lie algebra of the orthogonal group
SOðMÞ [23], with i�j�k (j < k) representing the jk-th

SOðMÞ generator. These generalize �� in Eq. (2). The

FIG. 2 (color online). Sketch of the predicted signatures of the
topological Kondo effect showing the crossover between low and
high temperature behaviors. The solid curve represents the
temperature dependence of the offdiagonal conductance G21 in
a setup shown in the Inset. For contrast, we also show (dashed
line) G21 if the third lead is decoupled (Ising case). The striking
difference between the two cases is a smoking gun signature of
the topological Kondo effect.
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matrix i��ab generalizes to A
ðjkÞ
ab ¼ ið�ja�kb � �ka�jbÞ, the

jk-th SOðMÞ generator in the defining representation. For
generalM<Mtot we thus have an SOðMÞ Kondo problem,
with a spinor impurity and conduction electrons in the
defining representation. For M ¼ Mtot the impurity is in
a half-spinor representation depending on the parity of N.
When this is faithful, lead electrons again furnish the
defining SOðMÞ representation. To the best of our knowl-
edge, Kondo problems of this type have not appeared in the
literature so far. In particular, these problems are markedly
different from the descriptions of the two-channel Kondo
model related to orthogonal groups and/or Majorana fer-
mions [24]. In addition to the apparent distinction that
these works introduce Majorana fermions only for mathe-
matical convenience, their models themselves are different
from ours: they do not conserve charge [25], or have
different group structure [24].

We end by outlining some features of the general
M<Mtot case, assuming isotropic couplings �þ

ij ¼ �þ,
��
ii ¼ ��. (We expect that the results also hold for

M ¼ Mtot with faithful half-spinor representations.) The
scaling (3) generalizes to

d�þ

dl
¼ 2�ðM� 2Þð�þÞ2; (7)

while �� does not renormalize. This again implies an
inverse logarithmic growth of �þ and the corresponding
inverse log-square temperature dependence of the weak
coupling conductance. At low temperatures, we expect

NFL behavior, with a convergence to Gkl ¼ 2e2

Mh for k � l,

obtained by generalizing the results [22] for the Andreev
reflection fixed point.

In summary, we have shown that the topological degen-
eracy of Majorana fermions can lead to a new class of
topologicalKondo effects. These effects are not only novel
from a mathematical perspective, but also have important
and striking physical consequences for realistic experi-
mental systems. We have established the detailed proper-
ties for the simplest case (with M ¼ 3 leads coupled to
Majorana fermions), in which topological degeneracy
gives rise to a dynamical nonlocal quantum spin. We
have shown that this leads to a NFL behavior that is robust
to perturbations, in contrast to the conventional Kondo
context, where such behavior is known to be unstable.
The resulting nontrivial power law dependences and the
enhanced conductance due to strong correlations are all
distinctive qualitative features, which comewith a smoking
gun signature: they can be switched off at will by decou-
pling any one of the three leads. The physics we describe
can readily be explored in experiments on mesoscopic
devices based on superconducting structures using avail-
able technology. These studies would provide a clear test of
the expected nonlocal quantum dynamics of Majorana
fermions: such a measurement would be a crucial step

towards establishing the Majorana architecture for fault-
tolerant quantum computation.
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