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We perform an accurate time-dependent numerical study of an out-of-equilibrium response of a bound

state within t-J systems on a two-leg ladder and a square lattice. We show that the bound hole pair decays

with the onset of finite steady current if both mechanisms for binding and the dissipation share matching

degrees of freedom. Moreover, by investigating the mechanism of decay on the square lattice we find that

the dynamics is governed by the decay in the direction perpendicular to the electric field, leading to much

shorter decay times in comparison to the ladder where such dynamics is topologically restricted.
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Introduction.—Equilibrium states of correlated many-
body systems can exhibit many distinct collective
phenomena, with the Mott insulating, superconducting
and magnetically ordered states being the most promi-
nent examples. A fundamental question in this respect is
how such many-body states behave when driven far from
their equilibrium by finite external fields. Many theoreti-
cal studies have recently focused on the dielectric break-
down of the Mott insulator [1,2] and the majority of
them addressed this problem within the framework of the
half-filled Hubbard model. Much less is known about
nonequilibrium properties of strongly correlated systems
away from half filling, where unconventional supercon-
ductivity may possibly emerge. Ballistic response of
superconductors to constant electric field has recently
been observed [3]. It shows up as a current that increases
linearly in time up to a threshold value above which the
superconductivity is destroyed. The properties of cuprate
superconductors subject to the electric current have also
been studied within a variational (equilibrium) approach
[4]. For low concentration of holes, sufficiently strong
current destroys superfluid stiffness while pairing re-
mains intact.

In this Letter, we do not discuss superconductivity.
Instead we focus on the real-time nonequilibrium dynam-
ics of its basic ingredients, i.e., bound pairs of charge
carriers. According to the Ohm’s law, driving of charge
carriers by constant electric field leads to a finite time-
independent current due to a steady emission of excita-
tions, e.g., phonons or magnons. Here, we address a
question whether a bound pair of two carriers can respond
in a similar way, i.e., whether it can acquire a constant
velocity upon constant electric field without decaying into
two separate carriers. In principle, such a problem can be
addressed in experiments on systems in which pairing
precedes the superconducting phase coherence.

Despite a seeming simplicity of this problem the answer
is not immediately obvious since pairing degrees of free-
dom simultaneously present quite effective dissipation
channels. Therefore, propagation of a bound pair under
electric field causes steady emission (heating) of magnons
or spin fluctuations which simultaneously mediate the
pairing interaction. Here, we consider two holes in the t-J
ladder and square lattice and carry out fully microscopic
calculations taking into account two most relevant phe-
nomena: (i) pairing by the exchange of spin excitations
that has been so far studied predominantly under equilib-
rium conditions [5–7]; (ii) dissipation by emission of spin
excitations [8]. Recent investigations of driven systems
at half filling have contributed to a general understanding
of heating in isolated systems which on a long time scale
suppresses any steady current [9,10]. There are two
possible ways to avoid this problem: either to couple the
system to environment [11–15], or to consider a vanish-
ingly small concentration of charge carriers [8,16]. In this
Letter, we consider the second option. For a fixed number
of carriers (two holes) heating is a finite size effect [8];
thus, we restrict our analysis to regimes where the results
are essentially size independent.
Another important property of driven quantum systems

that remains a widely unexplored subject is the role of
dimensionality transpiring in the compelling phenomena
emerging in the direction perpendicular to the driving
[13,17]. The most common numerical approaches to non-
equilibrium correlated systems were developed for studies
of either one-dimensional [18] or high-dimensional [19,20]
systems. By using dynamical mean-field theory it has been
shown that in the limit of an extremely strong electric field,
a D-dimensional system exhibits equilibrium properties in
D� 1 dimensions perpendicular to the field [13]. We show
that for a moderate electric field an unexpected effect
emerges in the 2D system: the decay of the bound state
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is governed by the motion of charge carriers perpendicular
to the field.

Model and setup.—We consider a driven t-J model with
two holes (also referred to as charge carriers) on the ladder
and the square lattice

H¼�t0
X

hiji;s
ð~cyi;s~cj;sei�ijðtÞ þH:c:ÞþX

hiji
Jij

�
SiSj�1

4
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;
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where ~ci;s ¼ ci;sð1� ni;�sÞ is a projected fermion operator,

t0 represents a nearest neighbor overlap integral, the sum
hiji runs over pairs of nearest neighbors, and ~ni ¼ ni;" þ
ni;# � 2ni;"ni;# is a projected electron number operator. On

the ladder, Jij may be different for interactions along and

perpendicular to the ladder’s leg, while we set Jij ¼ J for

the square lattice. The constant electric field F is switched
on at t ¼ 0. It is applied along the ladder’s leg and along the
diagonal of the square lattice, i.e., we set�ijðtÞ ¼ �ðþÞFt
and�ijðtÞ ¼ �ðþÞFt= ffiffiffi

2
p

for positive (negative) directions

of carrier hopping in Eq. (1), respectively [21].
We apply the time-dependent exact diagonalization

method (t-ED) within the full Hilbert space to calculate
the out-of-equilibrium response of the driven t-J ladder
with periodic boundary conditions, while we use the time-
dependent exact diagonalization method defined over a
limited functional space (t-EDLFS) for the t-J square
lattice [8,22]. The latter method has been successfully
applied to calculation of the ground state of the t-J model
with two doped holes [7]; the details of the method are
given elsewhere [23].

Time evolution of both systems subjected to an external
electric field is calculated using the iterative Lanczos
method [24]. This method has been lately applied to cal-
culate out-of-equilibrium response of different quantum
many-body systems, both during the constant driving
[9,16] as well as during and after photoexcitations [25]. In
contrast to the large part of recent nonequilibrium studies
of driven strongly—correlated systems [2,9,10,19,26], our
approach enables calculation of the steady state where the
driven charge carriers acquire constant velocity due to the
propagation in dissipative medium. The latter, which may
also be referred to as a quantum heat bath, can be either
modeled by interaction with magnons [8], phonons [27], or
both [16]. Interestingly, properties of these systems share
some similarities with driven systems at half-filling, with
the most prominent example being the current-field (�|-F)
characteristics [2,8,12,13,16,28]. However, the calculation
of �|-F characteristics is not the main goal of the present
Letter. Instead, we focus on the conditions and mechanism
of decay of the bound state under the influence of the
electric field.

Propagation of a bound state on the ladder.—The re-
sponse of a quantum system to a constant electric field
considerably depends on the strength of the field. For very
small F ! 0 the adiabatic regime (AR) with zero net

current is observed, while larger F gives rise to the
dissipative regime (DR) where constant F induces a
finite dc current [8,27]. Throughout the work, we introduce
the average distance between holes in parallel (dk)
and perpendicular (d?) direction, defined as

d� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

r

ðr � ê�Þ2CðrÞ
s

� d�ðt ¼ 0Þ;

where CðrÞ ¼ P
ihnhi nhiþri=2 (nhi is a hole number opera-

tor), while êk and ê? are unit vectors parallel and perpen-

dicular to the field, respectively.
The existence of the bound pairs in AR is rather unam-

biguous. If the spin gap (between the ground state and
the excited states) is finite for arbitrary momentum, then
the system remains in its instantaneous eigenstate. The
distance between carriers dkðtÞ and the change of the total

energy EðtÞ are determined by the instantaneous value of
the adiabatic parameter �ðtÞ ¼ Ft. Since the Hamiltonian
H½�� is periodic, dkðtÞ and EðtÞ are periodic as well. They
oscillate with a frequency twice larger than the Bloch
frequency !B ¼ F, where doubling originates from the
(double) charge of the bound pair. Plotting the system
evolution in the plane [EðtÞ, dkðtÞ], closed loops emerge

as a result of periodicity. Such a loop is shown in Fig. 1(a),
see the curve for the weakest field. The horizontal extent of
this loop is determined by the dispersion of the ground
state. Here, we show results for anisotropic J when ex-
change interaction along the rungs J? is much stronger
than the interaction along the legs Jk. In such a case the

spin gap occurs for arbitrary flux and the presence of AR
for F ! 0 is unquestionable.
Contrary to AR, DR is characterized by a steady in-

crease of energy EðtÞ. Therefore, moving from AR to DR
must be accompanied by a destruction of the loops in the
[EðtÞ, dkðtÞ] plane. The direction of the loop deformation

shows whether bound pairs survive in DR. If they do,
then the loops should be elongated only in the horizontal
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FIG. 1 (color online). Time evolution on a 2� 10 ladder with
two holes under constant F switched on at t ¼ 0. (a) dkðtÞ vs
EðtÞ for J? ¼ 1 (along the rungs), Jk ¼ 0:4 (along the legs)

and various F. (b) xðtÞ (main) and dkðtÞ vs xðtÞ (inset) for

three different values of V and W. We use J? ¼ Jk ¼ 0:4 and

F ¼ 0:125 in (b). In the inset, dkðtÞ is not subtracted by

dkðt ¼ 0Þ; thin dashed horizontal line shows dk for two non-

interacting fermions.
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direction [EðtÞ increases], while in the vertical direction
dkðtÞ should remain bound. However, as shown in Fig. 1(a)

the opposite happens: the increase of dkðtÞ goes along with
the increase of energy. This indicates that the bound pairs
dissociate immediately when DR sets in. Carrying out
calculations for various parameters and fields, we found
no case with propagating bound pairs in DR.

The central question is why is it so and what mechanism
would allow pairs to propagate with a steady velocity in a
dissipative environment. The propagation with a steady
velocity under a constant F leads to a steady increase of
energy. Since the average kinetic energy of charge carriers
should remain constant (steady current in DR), the electro-
static energy has to be transformed into excitations of the
spin background. However, the interaction of holes with
the spin background is simultaneously the only pairing
mechanism.

Below we demonstrate that this double role of spin
excitations—as a dissipation mechanism and as a pairing
mechanism—is responsible for the decay of bound pairs in
DR. For this reason we extend the t-J model by the nearest
(V) and next-nearest (W) neighbor attractive interactions

H ! H � V
X

hiji
nhi n

h
j �W

X

hhijii
nhi n

h
j ; (2)

which play the role of additional pairing mechanisms.
Fig. 1(b) demonstrates how this mechanism affects dkðtÞ
and the distance travelled by the center of mass xðtÞ for
various V but constant V-W. We notice that the changing of
V andW does not influence xðtÞ and the steady increase of
energy EðtÞ ¼ 2FxðtÞ being a hallmark of DR is clearly
visible. While in the pure t-J model the pairs dissociate
very quickly, see the curve V ¼ W ¼ 0 in the inset of
Fig. 1(b), both holes stay together for sufficiently large V
andW. Therefore, we notice that the bound pair of carriers
can propagate under constant F with a steady velocity
provided that there are different mechanisms (degrees of
freedom) responsible for pairing and dissipation.
Introducing V andW simultaneously leads to the attractive
potential between holes that allows hopping of the hole
pair without breaking the attractive potential. The opposite
case of large V and W ¼ 0 leads to pair breaking.

Inclusion of the interactions V and W allowed us
to explain why bound pairs in the pure t-J model
(and possibly in the electron-phonon systems [27])
decay as soon as the response is dominated by the dc
current. We would like to emphasize though that replacing
attractive V and W terms with more realistic electron-
phonon interaction would introduce an additional channel
for the dissipation of potential energy through the emission
of phonons. It is thus plausible to speculate, that a spin-
lattice bound pair would as well decay in the dissipative
regime. From now on, we again focus on the isotropic t-J
model and set V ¼ W ¼ 0.

Mechanism of decay.—We now extend our study to the
square lattice. We compare the response of the system in
the parallel vs perpendicular direction with respect to the
electric field. When investigating properties of the bound
state, see Fig. 2(a), we observe d?ðtÞ> dkðtÞ for all times

of our calculation. This implies, in contrast to the ladder
system, that the dynamics perpendicular to the electric
field governs the decay of the bound state for (at least)
short and intermediate times. We focus on this issue further
on to clarify the mechanism of decay on the square lattice.
We first investigate the transient time t < t�, where t� is

defined as the characteristic time needed to reach the
steady state after turning on the field. We may expect
that the dynamics of decay at t < t� is strongly dependent
on properties of the bound state in equilibrium, which is
determined by the energy scale J [7]. Remarkably, numeri-
cal data reveal both J- and F-independent scaling of d?ðtÞ
vs xðtÞ at short times. As shown in Fig. 2(b), the universal
relation between d?ðtÞ and xðtÞ can be well described by

d?ðtÞ / xðtÞe�ð1=�JxðtÞÞ; (3)

with �� 2. Such a relation, which indicates an activated-
type of behavior, incorporates the information about the
size of the bound state at t ¼ 0. Indeed, the average dis-
tance between two holes in the equilibrium scales roughly
with 1=J for J > 0:4 [29]. For t > t� the scaling of Eq. (3)
breaks down; however, d?ðtÞ vs xðtÞ still shows a
F-independent behavior for a fixed J. In the following,
we will show that such F-independent scaling is expected
as well for larger times t � t�.
We now proceed to describe the properties of the steady

state, which is defined as the regimewhen the current along
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FIG. 2 (color online). Driven hole pair on the square lattice.
(a) dkðtÞ and d?ðtÞ for J ¼ 0:4 and F ¼ 0:7. (b) d?ðtÞJ vs xðtÞJ
for different J and F. Black solid line represents a fit d?ðtÞ ¼
�xðtÞ expð� 1

�JxðtÞÞ, where � ¼ 1:474 and � ¼ 2:066. (c) Current

jðtÞ for different J and F. (d) �ðtÞ vs xðtÞ, see Eq. (6), for the
same set of parameters as in (b).
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the field jðtÞ is time independent. In Fig. 2(c) we plot jðtÞ
which clearly marks the onset of constant current for t * 2.
In this regime holes are already well separated in space and
the binding mechanism should be significantly weaker than
in the equilibrium. Therefore, one may expect a rather
independent movement of holes in the direction perpen-
dicular to F. This movement can be naively modeled by a
random-walking process:

d2?ðtÞ ¼ d2?ðt�Þ þ ðt� t�ÞD?; (4)

where ðt� t�ÞD? is proportional to the number of random
steps in the time window (t� t�). In the same way, we may
define xðtÞ for t > t� as

xðtÞ ¼ x� þ ðt� t�Þ�|; (5)

where again x� ¼ xðt�Þ and �| represents the steady (dc)
current. Expressing (t-t�) from Eq. (5) and inserting it into
Eq. (4), we may express time-dependence of d?ðtÞ through
xðtÞ. To justify the choice of ansatz in Eq. (4), we introduce
a quantity �ðtÞ defined as

�ðtÞ ¼ d2?ðtÞ
xðtÞ ¼ A

xðtÞ þ
D?
�|
; (6)

where A ¼ d2?ðt�Þ � D?
�| x� (in our case, A < 0). For long

enough times, we expect A=xðtÞ ! 0 and �ðtÞ should ap-
proach the constant �� ¼ D?=�|. Indeed, we observe in
Fig. 2(d) the saturation of �ðtÞ for different values of F
and J. Moreover, for a fixed J the values of �� are indepen-
dent of the strength of the electric field F. This result
implies that for moderate driving, the number of random
steps ðt-t�ÞD? is proportional to the distance travelled
along the field ðt-t�Þ�|. This proportionality suggests yet
another strong argument supporting the decay of the driven
bound state in 2D.

Decay of the bound state can also be monitored by
calculating the 2D correlation function CðrÞ measuring
time-dependent probability for the hole pair to be at a
relative position r. Results in Fig. 3 show a disk-shaped
pattern of CðrÞ elongated perpendicular to the field,
consistent with Fig. 2(a). Moreover, a perpendicular cut
through r ¼ ð0; 0Þ (not shown) reveals that the position of
maximum of CðrÞ steadily moves to larger jrj, determining
the main direction of decay.

Discussion and conclusion.—By applying the t-ED and
t-EDLFS method to study the real-time response of a fully
quantum system, we managed to follow the out-of-
equilibrium dynamics of a driven system where initially
at t ¼ 0 the bound state exists due to the exchange of spin
excitations. Our calculations on the ladder system show
that as long as there is no additional mechanism to provide
the glue for binding, the bound state of two charge carriers
decays with the onset of finite steady current. In the
2D system a bound pair decays predominantly in the
perpendicular direction with respect to the external field,
which consequently allows for more efficient release of the
gained potential energy through magnon emission. At
longer times, however, the motion of carriers perpendicular
to the field can be consistently described by a random walk
with the same scattering mechanism as for the propagation
along the field. Therefore, assuming that preformed pairs
exist in a superconductor above Tc [30], our data indicate
that steady propagation of bound pairs may not be realized
as long as pairing and dissipation emanate from identical
degrees of freedom.
Our results on the decay of the bound state may as well

lead to a broader understanding of driven strongly corre-
lated systems. We found a significant difference in the
out-of-equilibrium response between quasi-1D and 2D
systems. In this context, we showed that at short times
after switching on the field, the perpendicular distance
between carriers d?ðtÞ is universally determined by the
distance travelled by the center of mass of two carriers xðtÞ.
Because of additional decay channels that open as a
consequence of charge motion along the perpendicular
direction, the characteristic decay time on the square lattice
is much shorter than on the ladder system. We expect that
such cooperative correlation between parallel and perpen-
dicular dynamics may also manifest itself in various setups
driven away from equilibrium (like that in Ref. [31]) where
charge carriers initially form a state with inhomogeneous
microscopic structure.
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Heidrich-Meisner, I. González, K. A. Al-Hassanieh, A. E.
Feiguin, M. J. Rozenberg, and E. Dagotto, Phys. Rev. B
82, 205110 (2010); S. Kirino and K. Ueda, J. Phys. Soc.
Jpn. 79, 093710 (2010); Z. Lenarčič and P. Prelovšek,
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